Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuta Matsuoka is active.

Publication


Featured researches published by Yuta Matsuoka.


Free Radical Biology and Medicine | 2012

Rapid and convenient detection of ascorbic acid using a fluorescent nitroxide switch

Yuta Matsuoka; Mayumi Yamato; Toshihide Yamasaki; Fumiya Mito; Ken-ichi Yamada

Ascorbic acid is a small-molecule reductant with multiple functions in vivo. Reducing ascorbic acid intake leads to a lack of hydroxylation of prolines and lysines, causing a looser triple helix and resulting in scurvy. Ascorbic acid also acts as an antioxidant to prevent oxidative stress. Because ascorbic acid is related to disease states, rapid and convenient detection of ascorbic acid should be useful in diagnosis. Nitroxide is reduced to the corresponding hydroxylamine by ascorbic acid and a sensitive and novel approach to its detection employs covalent coupling of nitroxide with a fluorophore, leading to intramolecular quenching of fluorescence emission by electron-exchange interactions. Here, we developed a new fluorophore-nitroxide probe, Naph-DiPy nitroxide, for ascorbic acid. Naph-DiPy nitroxide rapidly reacted with ascorbic acid and showed fluorescence enhancement, but not in response to other reductants or reactive oxygen species. To confirm the practical usefulness of the fluorophore-nitroxide probe, we demonstrated the use of Naph-DiPy nitroxide for the measurement of ascorbic acid in the plasma of osteogenic disorder Shionogi rats when fed an ascorbic acid-deficient diet. The results suggest that this novel fluorophore-nitroxide probe could sensitively and easily detect ascorbic acid and be useful as a tool for the diagnosis of disease states.


Journal of Organic Chemistry | 2011

Structural Concept of Nitroxide As a Lipid Peroxidation Inhibitor

Toshihide Yamasaki; Yuko Ito; Fumiya Mito; Kana Kitagawa; Yuta Matsuoka; Mayumi Yamato; Ken-ichi Yamada

Nitroxides have antioxidative activities toward lipid peroxidation, but the influence of steric factors is not known. We synthesized alkyl-substituted nitroxides at the α-position of the N-O moiety to enhance lipophilicity and the bulk effect. There was good correlation between the IC(50) and lipophilicity (log P(o/w)) of nitroxides with use of the thiobarbituric acid-reactive substances (TBARS) assay. Furthermore, an inhibitory effect on the TBARS assay was dependent upon the number and length of alkyl groups, though nitroxides had almost identical lipophilicity.


Free Radical Research | 2015

Brain imaging in methamphetamine-treated mice using a nitroxide contrast agent for EPR imaging of the redox status and a gadolinium contrast agent for MRI observation of blood–brain barrier function

Miho C. Emoto; Mayumi Yamato; Hideo Sato-Akaba; Ken-ichi Yamada; Yuta Matsuoka; Hirotada Fujii

Methamphetamine (METH)-induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. The aims of the present study conducted in the mouse brain repetitively treated with METH were to (1) examine the redox status using the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethylpiperidine-1-oxyl (MCP) and (2) non-invasively visualize the brain redox status with electron paramagnetic resonance (EPR) imaging. The rate of reduction of MCP was measured from a series of temporal EPR images of mouse heads, and this rate was used to construct a two-dimensional map of rate constants called a “redox map.” The obtained redox map clearly illustrated the change in redox balance in the METH-treated mouse brain that is a known result of oxidative damage. Biochemical assays also showed that the level of thiobarbituric acid-reactive substance, an index of lipid peroxidation, was increased in mouse brains by METH. The enhanced reduction in MCP observed in mouse brains was remarkably suppressed by treatment with the dopamine synthase inhibitor, α-methyl-p-tyrosine, suggesting that enhancement of the reduction reaction of MCP resulted from enzymatic reduction in the mitochondrial respiratory chain. Furthermore, magnetic resonance imaging (MRI) of METH-treated mice using a blood–brain barrier (BBB)-impermeable paramagnetic contrast agent revealed BBB dysfunction after treatment with METH for 7 days. MRI also indicated that the impaired BBB recovered after withdrawal of METH. EPR imaging and MRI are useful tools not only for following changes in the redox status and BBB dysfunction in mouse brains repeatedly administered METH, but also for tracing the drug effect after withdrawal of METH.


Nature Chemical Biology | 2016

Fluorescence probes to detect lipid-derived radicals

Ken-ichi Yamada; Fumiya Mito; Yuta Matsuoka; Satsuki Ide; Kazushige Shikimachi; Ayano Fujiki; Daiki Kusakabe; Yuma Ishida; Masataka Enoki; Arisa Tada; Miyuki Ariyoshi; Toshihide Yamasaki; Mayumi Yamato

Lipids and their metabolites are easily oxidized in chain reactions initiated by lipid radicals, forming lipid peroxidation products that include the electrophiles 4-hydroxynonenal and malondialdehyde. These markers can bind cellular macromolecules, causing inflammation, apoptosis and other damage. Methods to detect and neutralize the initiating radicals would provide insights into disease mechanisms and new therapeutic approaches. We describe the first high-sensitivity, specific fluorescence probe for lipid radicals, 2,2,6-trimethyl-4-(4-nitrobenzo[1,2,5]oxadiazol-7-ylamino)-6-pentylpiperidine-1-oxyl (NBD-Pen). NBD-Pen directly detected lipid radicals in living cells by turn-on fluorescence. In a rat model of hepatic carcinoma induced by diethylnitrosamine (DEN), NBD-Pen detected lipid radical generation within 1 h of DEN administration. The lipid radical scavenging moiety of NBD-Pen decreased inflammation, apoptosis and oxidative stress markers at 24 h after DEN, and liver tumor development at 12 weeks. Thus, we have developed a novel fluorescence probe that provides imaging information about lipid radical generation and potential therapeutic benefits in vivo.


Life Sciences | 2014

Ascorbic acid reverses the prolonged anesthetic action of pentobarbital in Akr1a-knockout mice

Junitsu Ito; Noriyuki Otsuki; Xuhong Zhang; Tasuku Konno; Toshihiro Kurahashi; Motoko Takahashi; Mayumi Yamato; Yuta Matsuoka; Ken-ichi Yamada; Satoshi Miyata; Junichi Fujii

AIMS Aldehyde reductase (AKR1A), a member of the aldo-keto reductase superfamily, is highly expressed in the liver and is involved in both the detoxification of carbonyl compounds and ascorbic acid biosynthesis. By comparison with wild-type mice, Akr1a-knockout (Akr1a(-/-)) mice and human Akrla-transgenic (Akr1a(tg/+)) mice experience different anesthetic actions from pentobarbital-prolonged in Akr1a-knockout (Akr1a(-/-)) mice and shortened in human Akrla-transgenic (Akr1a(tg/+)) mice. MAIN METHODS We investigated this alteration in the anesthetic efficacy of pentobarbital in Akr1a genetically modified mice. KEY FINDINGS Neither the cytosolic protein of wild-type mouse liver nor purified rat AKR1A directly reduced pentobarbital. Ascorbic acid administration neutralized the prolonged duration of the loss of the righting reflex (LORR) in Akr1a(-/-) mice, but preincubation of pentobarbital with ascorbic acid prior to administration did not change the anesthetic effect. Those results indicated that ascorbic acid does not directly reduce pentobarbital. Enzymatic activities and levels of the proteins of some cytochrome P450s that make up a potent detoxification system for pentobarbital showed no changes in the genetically modified mice examined. Thus, ascorbic acid also had no effect on the detoxification system in the liver. The prolonged duration of LORR in the Akr1a(-/-) mice caused by pentobarbital and the neutralization of the anesthetic effect by ascorbic acid together with other results imply that ascorbic acid alters the responses of the neuronal system to anesthetics. SIGNIFICANCE Pentobarbital action is increased under conditions of ascorbic acid deficiency, and this may have to be taken into account when anesthetizing malnourished patients.


RSC Advances | 2016

A profluorescent nitroxide probe for ascorbic acid detection and its application to quantitative analysis of diabetic rat plasma

Yuta Matsuoka; Kei Ohkubo; Toshihide Yamasaki; Mayumi Yamato; Hiroshi Ohtabu; Tomonori Shirouzu; Shunichi Fukuzumi; Ken-ichi Yamada

15-((9-(Ethylimino)-10-methyl-9Hbenzo[a]phenoxazin-5-yl)amino)-3,11-dioxa-7-azadispiro[5.1.58.36]hexadecan-7-yloxyl, (Nile-DiPy) has been synthesized and examined as an off–on profluorescent nitroxide probe for measuring ascorbic acid in plasma. The substituents around the N–O moiety of nitroxide were used to increase the reactivity and selectivity toward the detection of ascorbic acid. We also investigated the photochemical reaction between the fluorophore and the nitroxide radical, and the reactivity of the Nile-DiPy toward the biological reductant. The fluorescence quenching mechanism of Nile-DiPy was proven to be via electron transfer from the nitroxide radical to the fluorophore moiety, which has been investigated by optical, electrochemical and femtosecond laser-induced transient absorption spectroscopy experiments. Furthermore, the kinetic isotope effect (KIE) for the detection of ascorbic acid was determined to be 9.77, indicating that Nile-DiPy reacts with ascorbic acid to produce the fluorescent Nile-DiPy-H via hydrogen atom transfer. The limit of detection (LOD) of this fluorometric method was estimated to be 9.72 nM, which is the lowest LOD in the detection method using fluorescent nitroxide probe. Additionally, the calculated bond dissociation free energy of ascorbic acid is the lowest among typical biological reductants used in this study. Thus, the reaction between the nitroxide radical and ascorbic acid is thermodynamically feasible to occur. Finally, we confirmed that Nile-DiPy could be used to measure the levels of ascorbic acid in the plasma of healthy and streptozotocin-induced diabetic rats within 20 min. This agreed well with the results from HPLC analysis. Nile-DiPy should be a useful tool for detecting ascorbic acid for biological applications because of its convenience and sensitivity.


Journal of Clinical Biochemistry and Nutrition | 2016

Fluorescence probe for the convenient and sensitive detection of ascorbic acid

Yuta Matsuoka; Mayumi Yamato; Ken-ichi Yamada

Ascorbic acid is an important antioxidant that plays an essential role in the biosynthesis of numerous bioactive substances. The detection of ascorbic acid has traditionally been achieved using high-performance liquid chromatography and absorption spectrophotometry assays. However, the development of fluorescence probes for this purpose is highly desired because they provide a much more convenient and highly sensitive technique for the detection of this material. OFF-ON-type fluorescent probes have been developed for the detection of non-fluorescent compounds. Photo-induced electron transfer and fluorescence resonance energy transfer are the two main fluorescence quenching mechanisms for the detection of ascorbic acid, and several fluorescence probes have been reported based on redox-responsive metals and quantum dots. Profluorescent nitroxide compounds have also been developed as non-metal organic fluorescence probes for ascorbic acid. These nitroxide systems have a stable unpaired electron and can therefore react with ascorbic acid and a strong fluorescence quencher. Furthermore, recent synthetic advances have allowed for the synthesis of α-substituted nitroxides with varying levels of reactivity towards ascorbic acid. In this review, we have discussed the design strategies used for the preparation of fluorescent probes for ascorbic acid, with particular emphasis on profluorescent nitroxides, which are unique radical-based redox-active fluorescent probes.


Neuroscience Letters | 2019

Non-invasive mapping of glutathione levels in mouse brains by in vivo electron paramagnetic resonance (EPR) imaging: Applied to a kindling mouse model

Miho C. Emoto; Hideo Sato-Akaba; Yuta Matsuoka; Ken-ichi Yamada; Hirotada G. Fujii

Glutathione (GSH) is an important antioxidant that can protect cells under oxidative stress. Thus, a non-invasive method to measure and map the distribution of GSH in live animals is needed. To image the distribution of GSH levels in specific brain regions, a new method using electron paramagnetic resonance (EPR) imaging with a nitroxide imaging probe was developed. Pixel-based mapping of brain GSH levels was successfully obtained by using the linear relationship between reduction rates for nitroxides in brains, measured by an in vivo EPR imager, and brain GSH levels, measured by an in vitro biochemical assay. The newly developed method was applied to a kindling mouse model induced with pentylenetetrazole (PTZ) to visualize changes in GSH levels in specific brain regions after seizure. The obtained map of brain GSH levels clearly indicated decreased GSH levels around the hippocampal region compared to control mice.


Journal of Neuroinflammation | 2018

Connexin 30 deficiency attenuates A2 astrocyte responses and induces severe neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride Parkinson’s disease animal model

Atsushi Fujita; Hiroo Yamaguchi; Ryo Yamasaki; Yiwen Cui; Yuta Matsuoka; Ken-ichi Yamada; Jun-ichi Kira

BackgroundThe first pathology observed in Parkinson’s disease (PD) is ‘dying back’ of striatal dopaminergic (DA) terminals. Connexin (Cx)30, an astrocytic gap junction protein, is upregulated in the striatum in PD, but its roles in neurodegeneration remain elusive. We investigated Cx30 function in an acute PD model by administering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to wild-type (WT) and Cx30 knockout (KO) mice.MethodsOn days 1 and 7 after MPTP administration, we evaluated changes in astrocytic Cx30, Cx43, glial fibrillary acidic protein, and ionised calcium-binding adapter molecule 1 expression by immunostaining and biochemical analysis. Loss of DA neurons was evaluated by tyrosine hydroxylase immunostaining. Gene expression was analysed using A1, A2, pan-reactive astrocyte microarray gene sets, and M1, M2, and M1/M2 mixed microglial microarray gene sets. Real-time PCR and in situ hybridisation were performed to evaluate glial cell-derived neurotrophic factor (Gdnf) and S100a10 expression. Striatal GDNF protein levels were determined by enzyme-linked immunosorbent assay.ResultsMPTP treatment induced upregulation of Cx30 and Cx43 levels in the striatum of WT and KO mice. DA neuron loss was accelerated in Cx30 KO compared with WT mice after MPTP administration, despite no change in the striatal concentration of methyl-4-phenylpyridinium+. Astrogliosis in the striatum of Cx30 KO mice was attenuated by MPTP, whereas microglial activation was unaffected. Microarrays of the striatum showed reduced expression of pan-reactive and A2 astrocyte genes after MPTP treatment in Cx30 KO compared with WT mice, while M1, M2, and M1/M2 mixed microglial gene expression did not change. MPTP reduced the number of striatal astrocytes co-expressing Gdnf mRNA and S100β protein or S100a10 mRNA and S100β protein and also reduced the level of GDNF in the striatum of Cx30 KO compared with WT mice.ConclusionsThese findings indicate that Cx30 plays critical roles in astrocyte neuroprotection in an MPTP PD model.


Journal of Clinical Biochemistry and Nutrition | 2018

Antioxidant nitroxides protect hepatic cells from oxidative stress-induced cell death

Saki Shinto; Yuta Matsuoka; Mayumi Yamato; Ken-ichi Yamada

Oxidative stress causes cell death and induces many kinds of disease, including liver disease. Nitroxides are known to react catalytically with free radicals. In this study, the cell protective activities of nitroxides were compared with those of other antioxidants. Nitroxides showed much greater inhibition of hydrogen peroxide-induced cell death than other antioxidants in a hepatic cell line and in primary hepatocytes. The intracellular oxidative stress level at 24 h after hydrogen peroxide stimulation was significantly decreased by nitroxides, but not by other antioxidants. To clarify the mechanism of cell protection by nitroxides, we investigated whether nitroxides inhibited DNA damage and mitogen-activated protein kinase pathway activation. We found that nitroxides reduced caspase-3 activation and may have ultimately inhibited cell death. In conclusion, nitroxides are very useful for attenuating cell damage due to oxidative stress. Nitroxides are thus a potential therapeutic agent for oxidative stress-related diseases.

Collaboration


Dive into the Yuta Matsuoka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miho C. Emoto

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirotada Fujii

Sapporo Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge