Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mika Endo is active.

Publication


Featured researches published by Mika Endo.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and biological activities of a pH-dependently activated water-soluble prodrug of a novel hexacyclic camptothecin analog.

Jun Ohwada; Sawako Ozawa; Masami Kohchi; Hiroshi Fukuda; Chikako Murasaki; Hitomi Suda; Takeshi Murata; Satoshi Niizuma; Masao Tsukazaki; Kazutomo Ori; Kiyoshi Yoshinari; Yoshiko Itezono; Mika Endo; Masako Ura; Hiromi Tanimura; Yoko Miyazaki; Akira Kawashima; Shunsuke Nagao; Eitarou Namba; Koutarou Ogawa; Kazuko Kobayashi; Hisafumi Okabe; Isao Imperial Higashihak Umeda; Nobuo Shimma

CH0793076 (1) is a novel hexacyclic camptothecin analog showing potent antitumor activity in various human caner xenograft models. To improve the water solubility of 1, water-soluble prodrugs were designed to generate an active drug 1 nonenzymatically, thus expected to show less interpatient PK variability than CPT-11. Among the prodrugs synthesized, 4c (TP300, hydrochloride) having a glycylsarcosyl ester at the C-20 position of 1 is highly water-soluble (>10mg/ml), stable below pH 4 and rapidly generates 1 at physiological pH in vitro. The rapid (ca. <1min) generation of 1 after incubation of TP300 with plasma (mouse, rat, dog and monkey) was also demonstrated. TP300 showed a broader antitumor spectrum and more potent antitumor activity than CPT-11 in various human cancer xenograft models.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis of new camptothecin analogs with improved antitumor activities

Satoshi Niizuma; Masao Tsukazaki; Hitomi Suda; Takeshi Murata; Jun Ohwada; Sawako Ozawa; Hiroshi Fukuda; Chikako Murasaki; Masami Kohchi; Kenji Morikami; Kiyoshi Yoshinari; Mika Endo; Masako Ura; Hiromi Tanimura; Yoko Miyazaki; Tsuyoshi Takasuka; Akira Kawashima; Eitaro Nanba; Kounosuke Nakano; Kotaro Ogawa; Kazuko Kobayashi; Hisafumi Okabe; Isao Imperial Higashihak Umeda; Nobuo Shimma

Novel hexacyclic camptothecin analogs containing cyclic amidine, urea, or thiourea moiety were designed and synthesized based on the proposed 3D-structure of the topoisomerase I (Topo I)/DNA/camptothecin ternary complex. The analogs were prepared from 9-nitrocamptothecin via 7,9-diaminocamptothecin derivatives as a key intermediate. Among them, 7c exhibited in vivo antitumor activities superior to CPT-11 in human cancer xenograft models in mice at their maximum tolerated doses though its in vitro antiproliferative activity was comparable to SN-38 against corresponding cell lines.


Cancer Chemotherapy and Pharmacology | 2010

A water soluble prodrug of a novel camptothecin analog is efficacious against breast cancer resistance protein-expressing tumor xenografts

Mika Endo; Masanori Miwa; Masako Ura; Hiromi Tanimura; Kenji Taniguchi; Yoko Miyazaki; Jun Ohwada; Masao Tsukazaki; Satoshi Niizuma; Takeshi Murata; Sawako Ozawa; Hitomi Suda; Kotaro Ogawa; Eitaro Nanba; Shunsuke Nagao; Nobuo Shimma; Hisafumi Yamada-Okabe

PurposeIdentification of a novel topoisomerase I inhibitor which shows superior efficacy and less individual variation than irinotecan hydrochloride (CPT-11).MethodsA novel camptothecin analog that is effective against breast cancer resistance protein (BCRP)-positive cells was screened, and a water soluble prodrug was generated. Antitumor activity of the prodrug was examined in BCRP-positive and -negative xenografts both as a single agent and in combination with other anti-cancer drugs.ResultsA novel camptothecin analog, CH0793076, was discovered. Because CH0793076 was found to be highly lipophilic, a water soluble prodrug (TP300) was generated. TP300 is stable in an acidic solution but is rapidly converted to CH0793076 under physiological pH conditions such as in sera. This efficient prodrug activation would minimize interpatient differences in pharmacokinetic and toxicity profiles. Unlike CPT-11, TP300 does not exhibit cholinergic interaction or cause acute diarrhea at effective doses. In mouse xenograft models, TP300 showed antitumor activity against both BCRP-positive and -negative xenografts, whereas CPT-11 was less active against BCRP-positive xenografts. In addition, the effective dose range (MTD/ED50) for TP300 was wider than for CPT-11 and TP300 showed additive or synergistic antitumor effects in combination with other anti-cancer drugs such as capecitabine, oxaliplatin, cisplatin, bevacizumab and cetuximab.ConclusionIt is therefore expected that TP300 will provide an additional treatment option for patients who will undergo chemotherapy with camptothecins.


Science Translational Medicine | 2017

An anti–glypican 3/CD3 bispecific T cell–redirecting antibody for treatment of solid tumors

Takahiro Ishiguro; Yuji Sano; Shun-ichiro Komatsu; Mika Kamata-Sakurai; Akihisa Kaneko; Yasuko Kinoshita; Hirotake Shiraiwa; Yumiko Azuma; Toshiaki Tsunenari; Yoko Kayukawa; Yukiko Sonobe; Natsuki Ono; Kiyoaki Sakata; Toshihiko Fujii; Yoko Miyazaki; Mizuho Noguchi; Mika Endo; Asako Harada; Werner Frings; Etsuko Fujii; Eitaro Nanba; Atsushi Narita; Akihisa Sakamoto; Tetsuya Wakabayashi; Hiroko Konishi; Hiroaki Segawa; Tomoyuki Igawa; Takashi Tsushima; Hironori Mutoh; Yukari Nishito

An anti–glypican 3/CD3 bispecific T cell–redirecting antibody (ERY974) is a promising therapeutic agent for solid tumors. Double trouble for solid tumors Because the endogenous immune response is not enough to clear a patient’s cancer, therapies are being designed to redirect T cells to tumor cells. This can be done by engineering the cells ex vivo, such as in CAR T cell therapy, or in vivo, such as with bispecific antibodies. Ishiguro et al. describe the development and preclinical testing of a bispecific antibody recognizing CD3 and glypican 3, a common antigen on solid tumors. This bispecific antibody was effective in a variety of mouse cancer models, even when treatment was initiated after the tumor was quite large. Treatment also appeared to be safe when administered to monkeys. These results suggest further development of this antibody for therapeutic use in multiple cancer types. Cancer care is being revolutionized by immunotherapies such as immune checkpoint inhibitors, engineered T cell transfer, and cell vaccines. The bispecific T cell–redirecting antibody (TRAB) is one such promising immunotherapy, which can redirect T cells to tumor cells by engaging CD3 on a T cell and an antigen on a tumor cell. Because T cells can be redirected to tumor cells regardless of the specificity of T cell receptors, TRAB is considered efficacious for less immunogenic tumors lacking enough neoantigens. Its clinical efficacy has been exemplified by blinatumomab, a bispecific T cell engager targeting CD19 and CD3, which has shown marked clinical responses against hematological malignancies. However, the success of TRAB in solid tumors has been hampered by the lack of a target molecule with sufficient tumor selectivity to avoid “on-target off-tumor” toxicity. Glypican 3 (GPC3) is a highly tumor-specific antigen that is expressed during fetal development but is strictly suppressed in normal adult tissues. We developed ERY974, a whole humanized immunoglobulin G–structured TRAB harboring a common light chain, which bispecifically binds to GPC3 and CD3. Using a mouse model with reconstituted human immune cells, we revealed that ERY974 is highly effective in killing various types of tumors that have GPC3 expression comparable to that in clinical tumors. ERY974 also induced a robust antitumor efficacy even against tumors with nonimmunogenic features, which are difficult to treat by inhibiting immune checkpoints such as PD-1 (programmed cell death protein–1) and CTLA-4 (cytotoxic T lymphocyte–associated protein–4). Immune monitoring revealed that ERY974 converted the poorly inflamed tumor microenvironment to a highly inflamed microenvironment. Toxicology studies in cynomolgus monkeys showed transient cytokine elevation, but this was manageable and reversible. No organ toxicity was evident. These data provide a rationale for clinical testing of ERY974 for the treatment of patients with GPC3-positive solid tumors.


Cancer Research | 2016

Abstract DDT01-05: First-in-class T cell-redirecting bispecific antibody targeting glypican-3: a highly tumor-selective antigen

Takahiro Ishiguro; Yasuko Kinoshita; Yuji Sano; Yumiko Azuma; Toshiaki Tsunenari; Natsuki Ono; Yoko Kayukawa; Mika Kamata-Sakurai; Hirotake Shiraiwa; Akihisa Kaneko; Werner Frings; Shun-ichiro Komatsu; Jun-ichi Nezu; Mika Endo

Immune checkpoint inhibitors such as anti-PD1 antibodies have shown promising clinical responses in several solid tumors, however there remain patients who do not show an adequate response. Recent biomarker studies have revealed that the presence of neoantigens in the tumor can determine the level of response, and thus the next challenge will be how to target tumors with a neoantigen level that is too low to be recognized by endogenous cytotoxic T cells. Hope in this area is offered by a T cell-redirecting antibody (TRAB), which bispecifically engages CD3 and a tumor antigen, even at very low expression levels, to activate the inherent cytolytic potential of T cells against target tumor cells. A TRAB is highly potent because T cells are activated only in the presence of the targeted antigens and are not restricted by the specificity of the T cell receptor. Given this very potent cytotoxicity, the key to successfully achieving strong antitumor efficacy while avoiding on-target off-tumor toxicity is to select a highly tumor-selective antigen. Our fully humanized IgG TRAB recognizes CD3 and a highly tumor-selective antigen, glypican-3 (GPC3), which is a fetal protein expressed in a wide variety of tissues during development but suppressed in most adult tissues. On the other hand, an inct101e in GPC3 expression has been reported in hepatocellular carcinoma, gastric cancer, lung squamous cell carcinoma, and other cancers. In nonclinical in vitro pharmacology studies, the anti-GPC3 TRAB elicited activation and proliferation of T cells and T cell-dependent cellular cytotoxicity against a wide variety of GPC3-expressing tumor cells, and showed long-lasting in vivo efficacy against tumor expressing very low levels of GPC3 at a few thousand molecules per cell. Furthermore, in an immunocompetent mouse model using human CD3 transgenic mice, anti-GPC3 TRAB showed strong antitumor efficacy against poorly immunogenic tumors, whereas both the immune checkpoint inhibitors and a conventional ADCC-inducing antibody recognizing GPC3 did not show significant efficacy. Pharmacokinetics and toxicology studies in nonhuman primates showed a plasma half-life comparable to a standard IgG drug, allowing a QW or Q2W regimen in humans, with toxicity which was manageable and reversible; the main observations of transient cytokine elevation and associated clinical symptoms were markedly reduced by steroid premedication. Our anti-GPC3 TRAB, which is supported by proprietary antibody engineering technology (ART-Ig) that enables large-scale GMP manufacturing, has promise as a new approach in cancer immunotherapy. Citation Format: Takahiro Ishiguro, Yasuko Kinoshita, Yuji Sano, Yumiko Azuma, Toshiaki Tsunenari, Natsuki Ono, Yoko Kayukawa, Mika Kamata-Sakurai, Hirotake Shiraiwa, Akihisa Kaneko, Werner Frings, Shunichiro Komatsu, Junichi Nezu, Mika Endo. First-in-class T cell-redirecting bispecific antibody targeting glypican-3: a highly tumor-selective antigen. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr DDT01-05.


Cancer Research | 2017

Abstract 3653: Combining ERY974, a novel T cell-redirecting bispecific antibody targeting glypican-3, with chemotherapy profoundly improved antitumor efficacy over its monotherapy in xenograft model

Yuji Sano; Yumiko Azuma; Toshiaki Tsunenari; Yasuko Kinoshita; Yoko Kayukawa; Hironori Mutoh; Yoko Miyazaki; Takahiro Ishiguro; Shohei Kishishita; Yoshiki Kawabe; Mika Endo

Background: ERY974 is a humanized IgG4 bispecific T cell-redirecting antibody (TRAB) currently in Phase 1 clinical trial (NCT02748837). ERY974 consists of a common light chain and two different heavy chains that respectively recognize glypican-3 (GPC3) and CD3. The Fc portion of ERY974 is modified to lose FcγR binding to prevent GPC3-independent Fc-mediated effector function. However, binding activity to FcRn, an important factor in the PK profile of IgG, is maintained. ERY974 simultaneously binds to GPC3 on the cancer cell surface and to CD3 on the T cell surface, and induces TRAB-dependent cellular cytotoxicity mediated by the potent effector function of T cells. ERY974 shows strong antitumor activity against gastric, lung, ovarian, head & neck, and esophageal cancer-derived xenograft tumors in a non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mouse model injected with human T cells. Cancer immunotherapy, as represented by immune checkpoint inhibitors such as PD-1, PD-L1, and CTLA-4 antibodies, has recently been demonstrating remarkable clinical benefit in various tumor types. However, the number of patients who have survival benefit is limited, and combining cancer immunotherapy with other agents is required to improve the efficacy. Although ERY974 monotherapy is expected to show clinical activity based on the preclinical data, we examined whether further improvement of ERY974-induced efficacy is attained by combination with chemotherapy. Method & Results: We evaluated the combination effect of ERY974 with chemotherapy against xenograft tumors of MKN45 (gastric cancer) or NCI-H446 (lung cancer) either in a NOD-SCID mouse model injected with human T cells or in a humanized non-obese diabetic/shi-scid/IL-2Rγnull model in which differentiated human T cells are constitutively supplied. Although ERY974 monotherapy shows only minor antitumor effect against MKN45 and NCI-H446, combination therapy remarkably enhanced efficacy. In particular, ERY974 in combination with paclitaxel or cisplatin in NCI-H446 tumors caused a tumor disappearance without regrowth for a long period. Conclusion: These preclinical data suggest the possibility that the strategy of combining ERY974 with chemotherapy may succeed in increasing the clinical benefit. Now the combination effect is being further investigated to clarify the mechanism. Citation Format: Yuji Sano, Yumiko Azuma, Toshiaki Tsunenari, Yasuko Kinoshita, Yoko Kayukawa, Hironori Mutoh, Yoko Miyazaki, Takahiro Ishiguro, Shohei Kishishita, Yoshiki Kawabe, Mika Endo. Combining ERY974, a novel T cell-redirecting bispecific antibody targeting glypican-3, with chemotherapy profoundly improved antitumor efficacy over its monotherapy in xenograft model [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3653. doi:10.1158/1538-7445.AM2017-3653


Cancer Research | 2016

Abstract 1482: Anti-GPC3 TRAB, a first-in-class T cell-redirecting bispecific antibody targeting glypican-3 with potent in vitro and in vivo antitumor efficacy against solid tumors

Yasuko Kinoshita; Takahiro Ishiguro; Yuji Sano; Yumiko Azuma; Toshiaki Tsunenari; Natsuki Ono; Yoko Kayukawa; Otoya Ueda; Naoko A. Wada; Hiroshi Hino; Koichi Jishage; Hirotake Shiraiwa; Mika Kamata-Sakurai; Jun-ichi Nezu; Mika Endo

We present efficacy data for the T cell-redirecting antibody (TRAB) with highly potent anti-tumor efficacy. Anti-Glypican-3 (GPC3) TRAB is a humanized IgG4 bispecific antibody that simultaneously binds to GPC3 on the cancer cell surface and to CD3 on the T cell surface. Anti-GPC3 TRAB utilizes T cells as effectors to induce strong TRAB dependent cellular cytotoxicity (TDCC) in the presence of GPC3-expressing cells. Treatment with anti-GPC3 TRAB first activates T cells by increasing the expression of CD25 and CD69 and also upregulating cytokines IL-2, IL-4, IL-6, IL 10, IFNγ, and TNF, and then it enhances the proliferation of T cells. Anti-GPC3 TRAB showed antitumor activity against xenograft tumors derived from various cancer types — MKN-74 (human gastric adenocarcinoma), PC-10 (human lung squamous cell carcinoma), TOV-21G (human ovarian clear cell carcinoma), and KYSE70 (human esophageal squamous cell carcinoma) — in a NOD-SCID mouse model injected with human T cells. Although recent immunotherapy, as represented by immune check point inhibitors PD-1, PD-L1, and CTLA-4 antibodies, showed promising efficacy in human, not every patient can benefit from this immunotherapy, because the significant efficacy shown in patients by a blockade of immune checkpoints is closely related to the tumor microenvironment. The immune check point inhibitors show high efficacy against inflamed tumors, because these have been sufficiently infiltrated by cytotoxic T cells that recognize cancer-specific antigens. However, they do not have efficacy against non inflamed tumors. In an immunocompetent mouse model using human CD3 transgenic mice, neither the inhibitors that block immune checkpoints (such as PD-1, PD-L1 and CTLA-4) nor a conventional ADCC antibody recognizing GPC3 could show significant efficacy against a poorly immunogenic LLC1/hGPC3 tumor. However, anti-GPC3 TRAB showed efficacy against this poorly immunogenic tumor by utilizing any kind of T cell as effectors irrespective of TCR specificity, including not only CD8-positive but also CD4-positive T cells. The studies we present show that anti-GPC3 TRAB is a promising drug with high efficacy utilizing all kinds of T cells as effectors. The compound is expected to have efficacy even in patients with poorly immunogenic tumors, in which an immune checkpoint blockade fails to show efficacy. Citation Format: Yasuko Kinoshita, Takahiro Ishiguro, Yuji Sano, Yumiko Azuma, Toshiaki Tsunenari, Natsuki Ono, Yoko Kayukawa, Otoya Ueda, Naoko A. Wada, Hiroshi Hino, Koichi Jishage, Hirotake Shiraiwa, Mika Kamata-Sakurai, Junichi Nezu, Mika Endo. Anti-GPC3 TRAB, a first-in-class T cell-redirecting bispecific antibody targeting glypican-3 with potent in vitro and in vivo antitumor efficacy against solid tumors. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 1482.


Methods | 2018

Engineering a bispecific antibody with a common light chain: Identification and optimization of an anti-CD3 epsilon and anti-GPC3 bispecific antibody, ERY974

Hirotake Shiraiwa; Atsushi Narita; Mika Kamata-Sakurai; Takahiro Ishiguro; Yuji Sano; Naoka Hironiwa; Takashi Tsushima; Hiroaki Segawa; Toshiaki Tsunenari; Yosuke Ikeda; Yoko Kayukawa; Mizuho Noguchi; Tetsuya Wakabayashi; Akihisa Sakamoto; Hiroko Konishi; Taichi Kuramochi; Mika Endo; Kunihiro Hattori; Jun-ichi Nezu; Tomoyuki Igawa


Cancer Research | 2018

Abstract 5609: ERY974, a novel T cell-redirecting bispecific antibody targeting glypican-3, shows antitumor activity in gastric cancer patient-derived xenograft models with varying glypican-3 expression

Azuma Yumiko; Yuji Sano; Toshiaki Tsunenari; Yasuko Kinoshita; Yoko Miyazaki; Junko Shinozuka; Etsuko Fujii; Atsuhiko Kato; Takahiro Ishiguro; Shohei Kishishita; Jun-ichi Nezu; Yoshiki Kawabe; Mika Endo


Cancer Research | 2018

Abstract 2747: Anti-glypican-3 monoclonal antibody (codrituzumab/GC33/RO5137382) treatment enhances tumor infiltration of PD-L1-positive macrophages, and combination therapy with anti-PD-L1 monoclonal antibody promotes antitumor effects

Mika Endo; Yasuko Kinoshita; Kenji Adachi; Yoshinori Narita; Jun Amano; Atsuhiko Kato; Takeshi Watanabe; Yoko Kayukawa; Yoko Miyazaki; Toshihiko Ohtomo

Collaboration


Dive into the Mika Endo's collaboration.

Top Co-Authors

Avatar

Yoko Miyazaki

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoko Kayukawa

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Yuji Sano

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Hiromi Tanimura

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun-ichi Nezu

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Masako Ura

Chugai Pharmaceutical Co.

View shared research outputs
Researchain Logo
Decentralizing Knowledge