Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mike Williams is active.

Publication


Featured researches published by Mike Williams.


Journal of Agricultural and Food Chemistry | 2014

Fate and Uptake of Pharmaceuticals in Soil–Plant Systems

Laura J. Carter; Eleanor Harris; Mike Williams; Jim J. Ryan; Rai S. Kookana; Alistair B.A. Boxall

Pharmaceuticals have been detected in the soil environment where there is the potential for uptake into crops. This study explored the fate and uptake of pharmaceuticals (carbamazepine, diclofenac, fluoxetine, propranolol, sulfamethazine) and a personal care product (triclosan) in soil–plant systems using radish (Raphanus sativus) and ryegrass (Lolium perenne). Five of the six chemicals were detected in plant tissue. Carbamazepine was taken up to the greatest extent in both the radish (52 μg/g) and ryegrass (33 μg/g), whereas sulfamethazine uptake was below the limit of quantitation (LOQ) (<0.01 μg/g). In the soil, concentrations of diclofenac and sulfamethazine dropped below the LOQ after 7 days. However, all pharmaceuticals were still detectable in the pore water at the end of the experiment. The results demonstrate the ability of plant species to accumulate pharmaceuticals from soils with uptake apparently specific to both plant species and chemical. Results can be partly explained by the hydrophobicity and extent of ionization of each chemical in the soil.


Philosophical Transactions of the Royal Society B | 2014

Potential ecological footprints of active pharmaceutical ingredients: An examination of risk factors in low-, middle- and high-income countries

Rai S. Kookana; Mike Williams; Alistair B.A. Boxall; D. G. J. Larsson; Sally Gaw; Kyungho Choi; H. Yamamoto; S. Thatikonda; Yong-Guan Zhu; Pedro Carriquiriborde

Active pharmaceutical ingredients (APIs) can enter the natural environment during manufacture, use and/or disposal, and consequently public concern about their potential adverse impacts in the environment is growing. Despite the bulk of the human population living in Asia and Africa (mostly in low- or middle-income countries), limited work relating to research, development and regulations on APIs in the environment have so far been conducted in these regions. Also, the API manufacturing sector is gradually shifting to countries with lower production costs. This paper focuses mainly on APIs for human consumption and highlights key differences between the low-, middle- and high-income countries, covering factors such as population and demographics, manufacture, prescriptions, treatment, disposal and reuse of waste and wastewater. The striking differences in populations (both human and animal), urbanization, sewer connectivity and other factors have revealed that the environmental compartments receiving the bulk of API residues differ markedly between low- and high-income countries. High sewer connectivity in developed countries allows capture and treatment of the waste stream (point-source). However, in many low- or middle-income countries, sewerage connectivity is generally low and in some areas waste is collected predominantly in septic systems. Consequently, the diffuse-source impact, such as on groundwater from leaking septic systems or on land due to disposal of raw sewage or septage, may be of greater concern. A screening level assessment of potential burdens of APIs in urban and rural environments of countries representing low- and middle-income as well as high-income has been made. Implications for ecological risks of APIs used by humans in lower income countries are discussed.


Environmental Toxicology and Chemistry | 2014

Assessment of multiple hormonal activities in wastewater at different stages of treatment

Peter A. Bain; Mike Williams; Anu Kumar

Changes in the endocrine potency of municipal wastewater at 3 wastewater treatment plants (WWTPs) in Australia were investigated using a panel of in vitro receptor-driven transactivation assays. The assays were based on human estrogen receptor α, androgen receptor, progesterone receptor, glucocorticoid receptor, and peroxisome proliferator-activated receptor γ2. Total removal efficiencies for estrogenic activity in the dissolved phase were 79.8% to 99.4%. Chemical analysis of 17β-estradiol, estrone, and 17α-ethinylestradiol levels showed that they accounted for the majority of the observed in vitro estrogenic activity in the final effluents but only 18% to 70% of estrogenic activity in the influents. Removal efficiency for androgenic activity was 97.5% to 100%. Endocrine activity levels were low in the final effluent of the WWTP with the lowest catchment population, with only estrogenic activity detected. In the final effluent of the WWTP with an intermediate catchment population, estrogenic, glucocorticoid, and peroxisome proliferator activities were detected. Estrogenic, antiandrogenic, progestagenic, glucocorticoid, and peroxisome proliferator activities were detected in the final effluent of the WWTP with the highest catchment population. The present study confirms the efficacy of secondary and tertiary treatment in reducing the concentrations of endocrine-active compounds in municipal wastewater. Further work is required to determine the possible health risks to aquatic biota posed by multiple hormonal activities present at low levels.


Environmental Toxicology and Chemistry | 2009

Estimating the sorption of pharmaceuticals based on their pharmacological distribution

Mike Williams; Poh L. Ong; Desmond B. Williams; Rai S. Kookana

Pharmaceuticals released into aquatic systems are expected to sorb to sediments to varying degrees. Their sorption is likely to influence their fate and, ultimately, the risk they pose to aquatic organisms. This has led to the European Medicines Agency requiring an assessment of affinity to solids, using batch sorption methods, for the environmental risk assessment (ERA) of new human medicines. However, a large body of data is generated before pharmaceuticals are released onto the market, including their extent of distribution throughout the human body, measured by the volume of distribution (VD). In the present study, batch sorption experiments were undertaken using 12 different soils and sediments to determine whether VD was a good indicator of experimental Kd values for 21 pharmaceuticals. The r2 values obtained from the regressions ranged from 0.39 to 0.76 (with a median value of 0.5) and all regressions were found to be significant. The use of this more comprehensive set of soils and sediments was consistent with previous studies comparing VD and Kd, despite the Kd values of the selected pharmaceuticals varying greatly between soils. The relationship between Kd and VD was greatly improved when zwitterionic antibiotics and carbamazepine were not included, possibly due to complex sorption or pharmacokinetic behavior. There are likely to be a number of factors affecting the sorption of pharmaceuticals that cannot be explained by VD. However, further work may elucidate how these factors can be accounted for, enabling VD to be effectively used to facilitate the ERA of human pharmaceuticals with already available information.


Environmental Science & Technology | 2015

Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases.

Laura J. Carter; Mike Williams; Christine Böttcher; Rai S. Kookana

The detection of a range of active pharmaceutical ingredients (APIs) in the soil environment has led to a number of publications demonstrating uptake by crops, however very few studies have explored the potential for impacts on plant development as a result of API uptake. This study investigated the effect of carbamazepine and verapamil (0.005-10 mg/kg) on a range of plant responses in zucchini (Cucurbita pepo). Uptake increased in a dose-dependent manner, with maximum leaf concentrations of 821.9 and 2.2 mg/kg for carbamazepine and verapamil, respectively. Increased carbamazepine uptake by zucchini resulted in a decrease in above (<60%) and below (<30%) ground biomass compared to the controls (p < 0.05). At soil concentrations >4 mg/kg the mature leaves suffered from burnt edges and white spots as well as a reduction in photosynthetic pigments but no such effects were seen for verapamil. For both APIs, further investigations revealed significant differences in the concentrations of selected plant hormones (auxins, cytokinins, abscisic acid and jasmonates), and in the nutrient composition of the leaves in comparison to the controls (p < 0.05). This is some of the first research to demonstrate that the exposure of plants to APIs is likely to cause impacts on plant development with unknown implications.


Journal of Hazardous Materials | 2016

Oxidation of ciprofloxacin and enrofloxacin by ferrate(VI): Products identification, and toxicity evaluation

Bin Yang; Rai S. Kookana; Mike Williams; Guang-Guo Ying; Jun Du; Hai Doan; Anupama Kumar

Ferrate(VI) (Fe(VI)) has been known to react with emerging organic contaminants containing electron-rich organic moieties, such as phenols, anilines, olefins, reduced sulfur and deprotonated amines. Oxidation of fluoroquinolone antibiotics, ciprofloxacin (CIP) and enrofloxacin (ENR), by Fe(VI) were investigated for their reaction products and toxicity changes as well as biodegradability of these products. Ten products were identified for both CIP and ENR reactions with Fe(VI) using a high-resolution accurate-mass Orbitrap mass analyzer. Structural changes to the CIP and ENR molecule included dealkylation, formation of alcohols and amides in piperazine ring and oxygen transfer to the double bond in quinolone structure. An enamine formation mechanism was tentatively proposed to facilitate the interpretation of CIP and ENR oxidation pathways. Toxicity evaluation using Microbial Assay for toxicity Risk Assessment (MARA) bioassay indicated that Fe(VI) oxidation products of CIP and ENR contributed negligible antibacterial potency and Fe(VI) oxidation treatment can remove the residual toxicity of CIP and ENR impacted source waters. The Fe(VI) oxidation treatment resulted in formation of relatively more biodegradable products (based on in silico assessment) than their corresponding parent compounds. The results showed that Fe(VI) has a good potential to degrade fluoroquinolone antibiotics and their antimicrobial potency in natural waters.


Integrated Environmental Assessment and Management | 2017

Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of endocrine-active substances

Peter Matthiessen; Gerald T. Ankley; Ronald C. Biever; Poul Bjerregaard; Christopher J. Borgert; Kristin E. Brugger; Amy Blankinship; Janice E. Chambers; Katherine Coady; Lisa A. Constantine; Zhichao Dang; Nancy D. Denslow; David A. Dreier; Steve Dungey; L. Earl Gray; Melanie Gross; Patrick D. Guiney; Markus Hecker; Henrik Holbech; Taisen Iguchi; Sarah M. Kadlec; Natalie K. Karouna-Renier; Ioanna Katsiadaki; Yukio Kawashima; Werner Kloas; Henry O. Krueger; Anu Kumar; Laurent Lagadic; Annegaaike Leopold; Steven L. Levine

A SETAC Pellston Workshop® “Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)” was held in February 2016 in Pensacola, Florida, USA. The primary objective of the workshop was to provide advice, based on current scientific understanding, to regulators and policy makers; the aim being to make considered, informed decisions on whether to select an ecotoxicological hazard- or a risk-based approach for regulating a given endocrinedisrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on 6 endocrine-active substances (EAS—not necessarily proven EDS, but substances known to interact directly with the endocrine system) that are representative of a range of perturbations of the endocrine system and considered to be data rich in relevant information at multiple biological levels of organization for 1 or more ecologically relevant taxa. The substances selected were 17α-ethinylestradiol, perchlorate, propiconazole, 17β-trenbolone, tributyltin, and vinclozolin. The 6 case studies were not comprehensive safety evaluations but provided foundations for clarifying key issues and procedures that should be considered when assessing the ecotoxicological hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve some of the identified issues. The present paper provides broad guidance for scientists in regulatory authorities, industry, and academia on issues likely to arise during the ecotoxicological hazard and risk assessment of EAS and EDS. The primary conclusion of this paper, and of the SETAC Pellston Workshop on which it is based, is that if data on environmental exposure, effects on sensitive species and life-stages, delayed effects, and effects at low concentrations are robust, initiating environmental risk assessment of EDS is scientifically sound and sufficiently reliable and protective of the environment. In the absence of such data, assessment on the basis of hazard is scientifically justified until such time as relevant new information is available.


Integrated Environmental Assessment and Management | 2017

Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances

Katherine Coady; Ronald C. Biever; Nancy D. Denslow; Melanie Gross; Patrick D. Guiney; Henrik Holbech; Natalie K. Karouna-Renier; Ioanna Katsiadaki; Hank Krueger; Steven L. Levine; Gerd Maack; Mike Williams; Jeffrey C. Wolf; Gerald T. Ankley

In the present study, existing regulatory frameworks and test systems for assessing potential endocrine active chemicals are described, and associated challenges are discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or to the environment. Current test systems include in silico, in vitro, and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1) adequately sensitive species and life stages; 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern; and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive with regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to and guidance for existing test methods and to reduce uncertainty. For example, in vitro high-throughput screening could be used to prioritize chemicals for testing and provide insights as to the most appropriate assays for characterizing hazard and risk. Other recommendations include adding endpoints for elucidating connections between mechanistic effects and adverse outcomes, identifying potentially sensitive taxa for which test methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen, and thyroid signaling. Integr Environ Assess Manag 2017;13:302-316.


Science of The Total Environment | 2010

Isotopic exchangeability as a measure of the available fraction of the human pharmaceutical carbamazepine in river sediment.

Mike Williams; Rai S. Kookana

Cabamazepine (CBZ), an antiepileptic pharmaceutical compound, is a pollutant of aquatic ecosystems entering via wastewater treatment plants that is considered to be persistent to degradation. An isotope exchange technique was employed using radiolabelled CBZ as a model compound, to determine the amount of isotopic exchangeability of CBZ in river sediment. The amount of isotopically exchangeable CBZ was used as an estimate of the extent of desorption hysteresis in solution from river sediment, including a treatment where the sediment was amended with black carbon. The isotopically exchangeable CBZ was measured by equilibrating 12C-CBZ with sediment for 0 to 28 days followed by a 24 hour equilibration with 14C-CBZ at the end of the incubation period. The isotopically exchangeable fraction of CBZ decreased over time in the sediment, particularly following amendment with black carbon. This has important implications for the fate of CBZ, which, apart from being resistant to degradation, is constantly released into aquatic ecosystems from wastewater treatment plants. This study demonstrates the availability of a relatively quick and simple alternative to batch desorption techniques for the assessment of the available fraction of organic compounds in sediments following their release into aquatic ecosystems.


Science of The Total Environment | 2015

Photolysis of the antidepressants amisulpride and desipramine in wastewaters: Identification of transformation products formed and their fate

Meritxell Gros; Mike Williams; Marta Llorca; Sara Rodriguez-Mozaz; Damià Barceló; Rai S. Kookana

Attenuation of pharmaceuticals due to natural sunlight is expected to be an important removal pathway in wastewater treatment plants using treatment lagoon systems. In this work, the photolysis of two antidepressants, amisulpride and desipramine, has been investigated in both ultrapure water and wastewater under simulated solar irradiation. Results showed that for amisulpride short irradiation times (t1/2 approximately 3h in pure water and 4h in wastewater) were adequate to degrade the parent compound while a longer exposure period was required for desipramine (t1/2 of approximately 36 h in pure water), although its degradation is enhanced almost three times by indirect photolysis in wastewaters. A significant number of transformation products (TPs) were identified for both pharmaceuticals by high-resolution mass spectrometry. In general, TPs formed are not persistent although acute toxicity tests for desipramine and its TPs showed an increase of the mixture toxicity after solar irradiation, suggesting that some TPs may be more toxic than the parent compound. In wastewaters collected from treatment lagoons, only amisulpride and one of its major TPs, TP 357, were detected. This indicates that long solar exposure times may be necessary for an effective elimination of these substances in lagoon systems or that photolysis may not be the main removal pathway for these particular compounds.

Collaboration


Dive into the Mike Williams's collaboration.

Top Co-Authors

Avatar

Rai S. Kookana

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Anupama Kumar

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Ali Shareef

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Hai Doan

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Eric D. Ebel

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anu Kumar

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Bin Yang

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Jun Du

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Gerald T. Ankley

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge