Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikhail A. Kats is active.

Publication


Featured researches published by Mikhail A. Kats.


Science | 2011

Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction

Nanfang Yu; Patrice Genevet; Mikhail A. Kats; Francesco Aieta; Jean-Philippe Tetienne; Federico Capasso; Z. Gaburro

Light propagation can be controlled with plasmonic interfaces that introduce abrupt phase shifts along the optical path. Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat’s principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.


Nano Letters | 2012

Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces

Francesco Aieta; Patrice Genevet; Mikhail A. Kats; Nanfang Yu; Romain Blanchard; Z. Gaburro; Federico Capasso

The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength-spaced optical antennas. The lenses and axicons consist of V-shaped nanoantennas that introduce a radial distribution of phase discontinuities, thereby generating respectively spherical wavefronts and nondiffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high-numerical aperture lenses such as flat microscope objectives.


Nano Letters | 2012

A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces

Nanfang Yu; Francesco Aieta; Patrice Genevet; Mikhail A. Kats; Z. Gaburro; Federico Capasso

We demonstrate optically thin quarter-wave plates built with metasurfaces that generate high-quality circularly polarized light over a broad wavelength range for arbitrary orientation of the incident linear polarization. The metasurface consists of an array of plasmonic antennas with spatially varying phase and polarization responses. Experimentally demonstrated quarter-wave plates generate light with a high degree of circular polarization (>0.97) from λ = 5 to 12 μm, representing a major advance in performance compared to previously reported plasmonics-based wave plates.


Nature Materials | 2013

Nanometre optical coatings based on strong interference effects in highly absorbing media.

Mikhail A. Kats; Romain Blanchard; Patrice Genevet; Federico Capasso

Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery.


Science | 2015

Multiwavelength achromatic metasurfaces by dispersive phase compensation

Francesco Aieta; Mikhail A. Kats; Patrice Genevet; Federico Capasso

Color correcting planar optics The functionality of many bulk optical elements can now be replaced by specially designed structures fabricated in thin films. This planar optics approach, however, has generally been applicable to only a narrow band of wavelengths. Aieta et al. show that chromatic dispersion, or color dependence, can be compensated for by the judicious design of the surface. The results demonstrate a general approach for the fabrication of broadband and lightweight optical elements that can be engineered into planar thin films. Science, this issue p. 1342 Arrays of dielectric resonators can be designed for multiwavelength response. The replacement of bulk refractive optical elements with diffractive planar components enables the miniaturization of optical systems. However, diffractive optics suffers from large chromatic aberrations due to the dispersion of the phase accumulated by light during propagation. We show that this limitation can be overcome with an engineered wavelength-dependent phase shift imparted by a metasurface, and we demonstrate a design that deflects three wavelengths by the same angle. A planar lens without chromatic aberrations at three wavelengths is also presented. Our designs are based on low-loss dielectric resonators, which introduce a dense spectrum of optical modes to enable dispersive phase compensation. The suppression of chromatic aberrations in metasurface-based planar photonics will find applications in lightweight collimators for displays, as well as chromatically corrected imaging systems.


Applied Physics Letters | 2012

Ultra-thin plasmonic optical vortex plate based on phase discontinuities

Patrice Genevet; Nanfang Yu; Francesco Aieta; Jiao Lin; Mikhail A. Kats; Romain Blanchard; Marlan O. Scully; Z. Gaburro; Federico Capasso

A flat optical device that generates optical vortices with a variety of topological charges is demonstrated. This device spatially modulates light beams over a distance much smaller than the wavelength in the direction of propagation by means of an array of V-shaped plasmonic antennas with sub-wavelength separation. Optical vortices are shown to develop after a sub-wavelength propagation distance from the array, a feature that has major potential implications for integrated optics.


Nano Letters | 2013

Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas

Yu Yao; Mikhail A. Kats; Patrice Genevet; Nanfang Yu; Yi Song; Jing Kong; Federico Capasso

Plasmonic antennas enable the conversion of light from free space into subwavelength volumes and vice versa, which facilitates the manipulation of light at the nanoscale. Dynamic control of the properties of antennas is desirable for many applications, including biochemical sensors, reconfigurable meta-surfaces and compact optoelectronic devices. The combination of metallic structures and graphene, which has gate-voltage dependent optical properties, is emerging as a possible platform for electrically controlled plasmonic devices. In this paper, we demonstrate in situ control of antennas using graphene as an electrically tunable load in the nanoscale antenna gap. In our experiments, we demonstrate electrical tuning of graphene-loaded antennas over a broad wavelength range of 650 nm (∼140 cm(-1), ∼10% of the resonance frequency) in the mid-infrared (MIR) region. We propose an equivalent circuit model to quantitatively analyze the tuning behavior of graphene-loaded antenna pairs and derive an analytical expression for the tuning range of resonant wavelength. In a separate experiment, we used doubly resonant antenna arrays to achieve MIR optical intensity modulation with maximum modulation depth of more than 30% and bandwidth of 600 nm (∼100 cm(-1), 8% of the resonance frequency). This study shows that combining graphene with metallic nanostructures provides a route to electrically tunable optical and optoelectronic devices.


Applied Physics Letters | 2012

Ultra-thin perfect absorber employing a tunable phase change material

Mikhail A. Kats; Deepika Sharma; Jiao Lin; Patrice Genevet; Romain Blanchard; Z. Yang; M. M. Qazilbash; D. N. Basov; Shriram Ramanathan; Federico Capasso

We show that perfect absorption can be achieved in a system comprising a single lossy dielectric layer of thickness much smaller than the incident wavelength on an opaque substrate by utilizing the nontrivial phase shifts at interfaces between lossy media. This design is implemented with an ultra-thin (∼λ/65) vanadium dioxide (VO2) layer on sapphire, temperature tuned in the vicinity of the VO2 insulator-to-metal phase transition, leading to 99.75% absorption at λ = 11.6 μm. The structural simplicity and large tuning range (from ∼80% to 0.25% in reflectivity) are promising for thermal emitters, modulators, and bolometers.


Nano Letters | 2012

Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities.

Francesco Aieta; Patrice Genevet; Nanfang Yu; Mikhail A. Kats; Z. Gaburro; Federico Capasso

Experiments on ultrathin anisotropic arrays of subwavelength optical antennas display out-of-plane refraction. A powerful three-dimensional (3D) extension of the recently demonstrated generalized laws of refraction and reflection shows that the interface imparts a tangential wavevector to the incident light leading to anomalous beams, which in general are noncoplanar with the incident beam. The refracted beam direction can be controlled by varying the angle between the plane of incidence and the antenna array.


Nano Letters | 2014

Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators

Yu Yao; Raji Shankar; Mikhail A. Kats; Yi Song; Jing Kong; Marko Loncar; Federico Capasso

Dynamically reconfigurable metasurfaces open up unprecedented opportunities in applications such as high capacity communications, dynamic beam shaping, hyperspectral imaging, and adaptive optics. The realization of high performance metasurface-based devices remains a great challenge due to very limited tuning ranges and modulation depths. Here we show that a widely tunable metasurface composed of optical antennas on graphene can be incorporated into a subwavelength-thick optical cavity to create an electrically tunable perfect absorber. By switching the absorber in and out of the critical coupling condition via the gate voltage applied on graphene, a modulation depth of up to 100% can be achieved. In particular, we demonstrated ultrathin (thickness < λ0/10) high speed (up to 20 GHz) optical modulators over a broad wavelength range (5-7 μm). The operating wavelength can be scaled from the near-infrared to the terahertz by simply tailoring the metasurface and cavity dimensions.

Collaboration


Dive into the Mikhail A. Kats's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chenghao Wan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jad Salman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge