Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nanfang Yu is active.

Publication


Featured researches published by Nanfang Yu.


Science | 2011

Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction

Nanfang Yu; Patrice Genevet; Mikhail A. Kats; Francesco Aieta; Jean-Philippe Tetienne; Federico Capasso; Z. Gaburro

Light propagation can be controlled with plasmonic interfaces that introduce abrupt phase shifts along the optical path. Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat’s principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.


Nano Letters | 2012

Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces

Francesco Aieta; Patrice Genevet; Mikhail A. Kats; Nanfang Yu; Romain Blanchard; Z. Gaburro; Federico Capasso

The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength-spaced optical antennas. The lenses and axicons consist of V-shaped nanoantennas that introduce a radial distribution of phase discontinuities, thereby generating respectively spherical wavefronts and nondiffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high-numerical aperture lenses such as flat microscope objectives.


Nano Letters | 2012

A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces

Nanfang Yu; Francesco Aieta; Patrice Genevet; Mikhail A. Kats; Z. Gaburro; Federico Capasso

We demonstrate optically thin quarter-wave plates built with metasurfaces that generate high-quality circularly polarized light over a broad wavelength range for arbitrary orientation of the incident linear polarization. The metasurface consists of an array of plasmonic antennas with spatially varying phase and polarization responses. Experimentally demonstrated quarter-wave plates generate light with a high degree of circular polarization (>0.97) from λ = 5 to 12 μm, representing a major advance in performance compared to previously reported plasmonics-based wave plates.


Applied Physics Letters | 2012

Ultra-thin plasmonic optical vortex plate based on phase discontinuities

Patrice Genevet; Nanfang Yu; Francesco Aieta; Jiao Lin; Mikhail A. Kats; Romain Blanchard; Marlan O. Scully; Z. Gaburro; Federico Capasso

A flat optical device that generates optical vortices with a variety of topological charges is demonstrated. This device spatially modulates light beams over a distance much smaller than the wavelength in the direction of propagation by means of an array of V-shaped plasmonic antennas with sub-wavelength separation. Optical vortices are shown to develop after a sub-wavelength propagation distance from the array, a feature that has major potential implications for integrated optics.


Nano Letters | 2013

Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas

Yu Yao; Mikhail A. Kats; Patrice Genevet; Nanfang Yu; Yi Song; Jing Kong; Federico Capasso

Plasmonic antennas enable the conversion of light from free space into subwavelength volumes and vice versa, which facilitates the manipulation of light at the nanoscale. Dynamic control of the properties of antennas is desirable for many applications, including biochemical sensors, reconfigurable meta-surfaces and compact optoelectronic devices. The combination of metallic structures and graphene, which has gate-voltage dependent optical properties, is emerging as a possible platform for electrically controlled plasmonic devices. In this paper, we demonstrate in situ control of antennas using graphene as an electrically tunable load in the nanoscale antenna gap. In our experiments, we demonstrate electrical tuning of graphene-loaded antennas over a broad wavelength range of 650 nm (∼140 cm(-1), ∼10% of the resonance frequency) in the mid-infrared (MIR) region. We propose an equivalent circuit model to quantitatively analyze the tuning behavior of graphene-loaded antenna pairs and derive an analytical expression for the tuning range of resonant wavelength. In a separate experiment, we used doubly resonant antenna arrays to achieve MIR optical intensity modulation with maximum modulation depth of more than 30% and bandwidth of 600 nm (∼100 cm(-1), 8% of the resonance frequency). This study shows that combining graphene with metallic nanostructures provides a route to electrically tunable optical and optoelectronic devices.


Nano Letters | 2012

Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities.

Francesco Aieta; Patrice Genevet; Nanfang Yu; Mikhail A. Kats; Z. Gaburro; Federico Capasso

Experiments on ultrathin anisotropic arrays of subwavelength optical antennas display out-of-plane refraction. A powerful three-dimensional (3D) extension of the recently demonstrated generalized laws of refraction and reflection shows that the interface imparts a tangential wavevector to the incident light leading to anomalous beams, which in general are noncoplanar with the incident beam. The refracted beam direction can be controlled by varying the angle between the plane of incidence and the antenna array.


IEEE Journal of Selected Topics in Quantum Electronics | 2013

Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces

Nanfang Yu; Patrice Genevet; Francesco Aieta; Mikhail A. Kats; Romain Blanchard; Guillaume Aoust; Jean-Philippe Tetienne; Z. Gaburro; Federico Capasso

Conventional optical components rely on the propagation effect to control the phase and polarization of light beams. One can instead exploit abrupt phase and polarization changes associated with scattered light from optical resonators to control light propagation. In this paper, we discuss the optical responses of anisotropic plasmonic antennas and a new class of planar optical components (“metasurfaces”) based on arrays of these antennas. To demonstrate the versatility of metasurfaces, we show the design and experimental realization of a number of flat optical components: 1) metasurfaces with a constant interfacial phase gradient that deflect light into arbitrary directions; 2) metasurfaces with anisotropic optical responses that create light beams of arbitrary polarization over a wide wavelength range; 3) planar lenses and axicons that generate spherical wavefronts and nondiffracting Bessel beams, respectively; and 4) metasurfaces with spiral phase distributions that create optical vortex beams of well-defined orbital angular momentum.


Optics Express | 2007

Bowtie plasmonic quantum cascade laser antenna

Nanfang Yu; Ertugrul Cubukcu; Laurent Diehl; David P. Bour; Scott W. Corzine; Jintian Zhu; Gloria Höfler; Kenneth B. Crozier; Federico Capasso

We report a bowtie plasmonic quantum cascade laser antenna that can confine coherent mid-infrared radiation well below the diffraction limit. The antenna is fabricated on the facet of a mid-infrared quantum cascade laser and consists of a pair of gold fan-like segments, whose narrow ends are separated by a nanometric gap. Compared with a nano-rod antenna composed of a pair of nano-rods, the bowtie antenna efficiently suppresses the field enhancement at the outer ends of the structure, making it more suitable for spatially-resolved high-resolution chemical and biological imaging and spectroscopy. The antenna near field is characterized by an apertureless near-field scanning optical microscope; field confinement as small as 130 nm is demonstrated at a wavelength of 7.0 mum.


IEEE Journal of Selected Topics in Quantum Electronics | 2008

Plasmonic Laser Antennas and Related Devices

Ertugrul Cubukcu; Nanfang Yu; Elizabeth J. Smythe; Laurent Diehl; Kenneth B. Crozier; Federico Capasso

This paper reviews recent work on device applications of optical antennas. Localized surface plasmon resonances of gold nanorod antennas resting on a silica glass substrate were modeled by finite difference time-domain simulations. A single gold nanorod of length 150 or 550 nm resonantly generates enhanced near fields when illuminated with light of 830 nm wavelength. A pair of these nanorods gives higher field enhancements due to capacitive coupling between them. Bowtie antennas that consist of a pair of triangular gold particles offer the best near-field confinement and enhancement. Plasmonic laser antennas based on the coupled nanorod antenna design were fabricated by focused ion beam lithography on the facet of a semiconductor laser diode operating at a wavelength of 830 nm. An optical spot size of few tens of nanometers was measured by apertureless near-field optical microscope. We have extended our work on plasmonic antenna into mid-infrared (mid-IR) wavelengths by implementing resonant nanorod and bowtie antennas on the facets of various quantum cascade lasers. Experiments show that this mid-IR device can provide an optical intensity confinement 70 times higher than that would be achieved with diffraction limited optics. Near-field intensities ~ 1 GW/cm2 were estimated for both near-infrared and mid-IR plasmonic antennas. A fiber device that takes advantage of plasmonic resonances of gold nanorod arrays providing a high density of optical ldquohot spotsrdquo is proposed. Results of a systematic theoretical and experimental study of the reflection spectra of these arrays fabricated on a silica glass substrate are also presented. The family of these proof-of-concept plasmonic devices that we present here can be potentially useful in many applications including near-field optical microscopes, high-density optical data storage, surface enhanced Raman spectroscopy, heat-assisted magnetic recording, and spatially resolved absorption spectroscopy.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy

Mikhail A. Kats; Patrice Genevet; Guillaume Aoust; Nanfang Yu; Romain Blanchard; Francesco Aieta; Z. Gaburro; Federico Capasso

The manipulation of light by conventional optical components such as lenses, prisms, and waveplates involves engineering of the wavefront as it propagates through an optically thick medium. A unique class of flat optical components with high functionality can be designed by introducing abrupt phase shifts into the optical path, utilizing the resonant response of arrays of scatterers with deeply subwavelength thickness. As an application of this concept, we report a theoretical and experimental study of birefringent arrays of two-dimensional (V- and Y-shaped) optical antennas which support two orthogonal charge-oscillation modes and serve as broadband, anisotropic optical elements that can be used to locally tailor the amplitude, phase, and polarization of light. The degree of optical anisotropy can be designed by controlling the interference between the waves scattered by the antenna modes; in particular, we observe a striking effect in which the anisotropy disappears as a result of destructive interference. These properties are captured by a simple, physical model in which the antenna modes are treated as independent, orthogonally oriented harmonic oscillators.

Collaboration


Dive into the Nanfang Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikhail A. Kats

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi Jie Wang

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge