Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikhail Yu. Vyssokikh is active.

Publication


Featured researches published by Mikhail Yu. Vyssokikh.


Biochimica et Biophysica Acta | 2009

An attempt to prevent senescence: A mitochondrial approach

Vladimir P. Skulachev; Vladimir N. Anisimov; Yuri N. Antonenko; L. E. Bakeeva; Boris V. Chernyak; Valery P. Erichev; Oleg F. Filenko; Natalya I. Kalinina; Kapel'ko Vi; N. G. Kolosova; Boris P. Kopnin; Galina A. Korshunova; Mikhail R. Lichinitser; Lidia A. Obukhova; Elena G. Pasyukova; O. I. Pisarenko; Vitaly Roginsky; Ruuge Ek; Ivan I. Senin; Inna I. Severina; Maxim V. Skulachev; Irina M. Spivak; Vadim N. Tashlitsky; Tkachuk Va; Mikhail Yu. Vyssokikh; L. S. Yaguzhinsky; Dmitry B. Zorov

Antioxidants specifically addressed to mitochondria have been studied to determine if they can decelerate senescence of organisms. For this purpose, a project has been established with participation of several research groups from Russia and some other countries. This paper summarizes the first results of the project. A new type of compounds (SkQs) comprising plastoquinone (an antioxidant moiety), a penetrating cation, and a decane or pentane linker has been synthesized. Using planar bilayer phospholipid membrane (BLM), we selected SkQ derivatives with the highest permeability, namely plastoquinonyl-decyl-triphenylphosphonium (SkQ1), plastoquinonyl-decyl-rhodamine 19 (SkQR1), and methylplastoquinonyldecyltriphenylphosphonium (SkQ3). Anti- and prooxidant properties of these substances and also of ubiquinonyl-decyl-triphenylphosphonium (MitoQ) were tested in aqueous solution, detergent micelles, liposomes, BLM, isolated mitochondria, and cell cultures. In mitochondria, micromolar cationic quinone derivatives were found to be prooxidants, but at lower (sub-micromolar) concentrations they displayed antioxidant activity that decreases in the series SkQ1=SkQR1>SkQ3>MitoQ. SkQ1 was reduced by mitochondrial respiratory chain, i.e. it is a rechargeable antioxidant. Nanomolar SkQ1 specifically prevented oxidation of mitochondrial cardiolipin. In cell cultures, SkQR1, a fluorescent SkQ derivative, stained only one type of organelles, namely mitochondria. Extremely low concentrations of SkQ1 or SkQR1 arrested H(2)O(2)-induced apoptosis in human fibroblasts and HeLa cells. Higher concentrations of SkQ are required to block necrosis initiated by reactive oxygen species (ROS). In the fungus Podospora anserina, the crustacean Ceriodaphnia affinis, Drosophila, and mice, SkQ1 prolonged lifespan, being especially effective at early and middle stages of aging. In mammals, the effect of SkQs on aging was accompanied by inhibition of development of such age-related diseases and traits as cataract, retinopathy, glaucoma, balding, canities, osteoporosis, involution of the thymus, hypothermia, torpor, peroxidation of lipids and proteins, etc. SkQ1 manifested a strong therapeutic action on some already pronounced retinopathies, in particular, congenital retinal dysplasia. With drops containing 250 nM SkQ1, vision was restored to 67 of 89 animals (dogs, cats, and horses) that became blind because of a retinopathy. Instillation of SkQ1-containing drops prevented the loss of sight in rabbits with experimental uveitis and restored vision to animals that had already become blind. A favorable effect of the same drops was also achieved in experimental glaucoma in rabbits. Moreover, the SkQ1 pretreatment of rats significantly decreased the H(2)O(2) or ischemia-induced arrhythmia of the isolated heart. SkQs strongly reduced the damaged area in myocardial infarction or stroke and prevented the death of animals from kidney ischemia. In p53(-/-) mice, 5 nmol/kgxday SkQ1 decreased the ROS level in the spleen and inhibited appearance of lymphomas to the same degree as million-fold higher concentration of conventional antioxidant NAC. Thus, SkQs look promising as potential tools for treatment of senescence and age-related diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore

Fedor F. Severin; Inna I. Severina; Yury Nikolaevich Antonenko; Tatiana I. Rokitskaya; Dmitry A. Cherepanov; E. N. Mokhova; Mikhail Yu. Vyssokikh; Antonina V. Pustovidko; Olga V. Markova; L. S. Yaguzhinsky; Galina A. Korshunova; N. Sumbatyan; Maxim V. Skulachev; Vladimir P. Skulachev

A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H+-conducting fatty acid cycling mediated by penetrating cations such as 10-(6’-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C12TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (ΔpH) to a membrane potential (Δψ) of the Nernstian value (about 60 mV Δψ at ΔpH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C12TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H2O2 formation. In intact yeast cells, C12TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization.


Oncogene | 2002

Oligomycin, inhibitor of the F0 part of H+-ATP-synthase, suppresses the TNF-induced apoptosis.

Liarisa A. Shchepina; Olga Yu. Pletjushkina; Armine V. Avetisyan; Liora E. Bakeeva; Fetisova Ek; Denis S. Izyumov; V. B. Saprunova; Mikhail Yu. Vyssokikh; Boris V. Chernyak; Vladimir P. Skulachev

The release of cytochrome c from the intermembrane space of mitochondria into the cytosol is one of the critical events in apoptotic cell death. In the present study, it is shown that release of cytochrome c and apoptosis induced by tumor necrosis factor α (TNF) in HeLa cells can be inhibited by (i) overexpression of an oncoprotein Bcl-2, (ii) Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore (PTP) or (iii) oligomycin, an inhibitor of H+- ATP-synthase. Staurosporine-induced apoptosis is sensitive to Bcl-2 but insensitive to Cyclosporin A and oligomycin. The effect of oligomycin is not due to changes in mitochondrial membrane potential or to inhibition of ATP synthesis/hydrolysis since (a) uncouplers (CCCP, DNP) which discharge the membrane potential fail to abolish the protective action of oligomycin and (b) aurovertin B (another inhibitor of H+-ATP-synthase, affecting its F1 component) do not affect apoptosis. A role of oligomycin-sensitive F0 component of H+-ATP-synthase in the TNF-induced PTP opening and apoptosis is suggested.


Biochimica et Biophysica Acta | 2010

Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs)

Vladimir P. Skulachev; Yury Nikolaevich Antonenko; Dmitry A. Cherepanov; Boris V. Chernyak; Denis S. Izyumov; Ludmila S. Khailova; Sergey S. Klishin; Galina A. Korshunova; Konstantin G. Lyamzaev; Olga Yu. Pletjushkina; Vitaly Roginsky; Tatiana I. Rokitskaya; Fedor F. Severin; Inna I. Severina; Ruben A. Simonyan; Maxim V. Skulachev; Natalia V. Sumbatyan; E. I. Sukhanova; Vadim N. Tashlitsky; T. A. Trendeleva; Mikhail Yu. Vyssokikh; R. A. Zvyagilskaya

The present state of the art in studies on the mechanisms of antioxidant activities of mitochondria-targeted cationic plastoquinone derivatives (SkQs) is reviewed. Our experiments showed that these compounds can operate as antioxidants in two quite different ways, i.e. (i) by preventing peroxidation of cardiolipin [Antonenko et al., Biochemistry (Moscow) 73 (2008) 1273-1287] and (ii) by fatty acid cycling resulting in mild uncoupling that inhibits the formation of reactive oxygen species (ROS) in mitochondrial State 4 [Severin et al. Proc. Natl. Acad. Sci. USA 107 (2009), 663-668]. The quinol and cationic moieties of SkQ are involved in cases (i) and (ii), respectively. In case (i) SkQH2 interrupts propagation of chain reactions involved in peroxidation of unsaturated fatty acid residues in cardiolipin, the formed SkQ- being reduced back to SkQH2 by heme bH of complex III in an antimycin-sensitive way. Molecular dynamics simulation showed that there are two stable conformations of SkQ1 with the quinol residue localized near peroxyl radicals at C9 or C13 of the linoleate residue in cardiolipin. In mechanism (ii), fatty acid cycling mediated by the cationic SkQ moiety is involved. It consists of (a) transmembrane movement of the fatty acid anion/SkQ cation pair and (b) back flows of free SkQ cation and protonated fatty acid. The cycling results in a protonophorous effect that was demonstrated in planar phospholipid membranes and liposomes. In mitochondria, the cycling gives rise to mild uncoupling, thereby decreasing membrane potential and ROS generation coupled to reverse electron transport in the respiratory chain. In yeast cells, dodecyltriphenylphosphonium (capital ES, Cyrillic12TPP), the cationic part of SkQ1, induces uncoupling that is mitochondria-targeted since capital ES, Cyrillic12TPP is specifically accumulated in mitochondria and increases the H+ conductance of their inner membrane. The conductance of the outer cell membrane is not affected by capital ES, Cyrillic12TPP.


Biochemistry | 2005

Reactive oxygen and nitrogen species: Friends or foes?

Dmitry B. Zorov; S. Y. Bannikova; Vsevolod V. Belousov; Mikhail Yu. Vyssokikh; L. D. Zorova; N. K. Isaev; Boris F. Krasnikov; E. Y. Plotnikov

Chemical and physiological functions of molecular oxygen and reactive oxygen species (ROS)and existing equilibrium between pools of pro-oxidants and anti-oxidants providing steady state ROS level vital for normal mitochondrial and cell functioning are reviewed. The presence of intracellular oxygen and ROS sensors is postulated and few candidates for this role are suggested. Possible involvement of ROS in the process of fragmentation of mitochondrial reticulum made of long mitochondrial filaments serving in the cell as “electric cables”, as well as the role of ROS in apoptosis and programmed mitochondrial destruction (mitoptosis) are reviewed. The critical role of ROS in destructive processes under ischemia/reoxygenation and ischemic preconditioning is discussed. Mitochondrial permeability transition gets special consideration as a possible component of the apoptotic cascade, resulting in excessive “ROS induced ROS release”.


Molecular and Cellular Biochemistry | 2004

VDAC and peripheral channelling complexes in health and disease

Mikhail Yu. Vyssokikh; Dieter Brdiczka

VDAC changes its structure either voltage dependent in artificial membranes or physiologically by interaction with the c conformation of the adenine nucleotide translocator (ANT). This interaction creates contact sites and leads to a specific organisation of cytochrome c in the VDAC ANT complexes. The VDAC structure specific for contact sites thus generates a signal at the surface for several proteins in the cytosol to bind with high affinity such as hexokinase, glycerolkinase and Bax. If the VDAC binding site is not occupied by hexokinase, the VDAC ANT complex has two critical qualities: firstly, external Bax gets access to the cytochrome c and secondly the ANT stays in the c conformation that easily changes the structure to an unspecific uni-porter causing permeability transition. Activity of bound hexokinase protects against both, it hinders Bax binding and employs the ANT as specific anti-porter. The octamer of mitochondrial creatine kinase binds to VDAC from the inner surface of the outer membrane. This firstly hinders direct interaction between VDAC and ANT and secondly changes porin structure into low affinity for hexokinase and external Bax. Cytochrome c in the creatine kinase complex will be differently organised not accessible to Bax and the ANT is run as anti-porter by the active octamer. However, when free radicals cause dissociation of the octamer, VDAC interacts with the ANT with the same results as described above: Bax dependent cytochrome c release and risk of permeability transition pore opening.


Molecular Biology Reports | 2002

Bax Releases Cytochrome c Preferentially from a Complex Between Porin and Adenine Nucleotide Translocator. Hexokinase Activity Suppresses this Effect

Mikhail Yu. Vyssokikh; Ljubava D. Zorova; Dmitry B. Zorov; Gerd Heimlich; Juliane M. Jürgensmeier; Dieter Brdiczka

The mechanism by which external Bax releases cytochrome c is still controversial and may also depend on the type of mitochondria and the actual localisation of cytochrome c. Outer membrane porin acquires high binding affinity for hexokinase by interacting with the adenine nucleotide translocator (ANT) in the contact sites. (I) The hexokinase protein was thus used as a tool to isolate the contact site forming complex between outer membrane porin and inner membrane ANT from a TritonX100 extract of brain membranes. (II) A significant amount of cytochrome c was co-purified with the isolated hexokinase porin ANT complexes that were reconstituted in phospholipid vesicles. Bax-δC released the endogenous cytochrome c from the vesicles without forming unspecific pores. This was shown by loading the vesicles with malate that was not liberated by Bax-δC. (III) The Bax-δC effect was dependent on a specific association of cytochrome c with the porin ANT complex, as dissociation of the complex by bongkrekate abolished the Bax dependent cytochrome c liberation. (IV) The Bax-δC effect was as well suppressed by hexokinase phosphorylating glucose.


FEBS Letters | 2013

In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives.

Inna I. Severina; Fedor F. Severin; Galina A. Korshunova; N. V. Sumbatyan; Tatyana M. Ilyasova; Ruben A. Simonyan; A. G. Rogov; T. A. Trendeleva; R. A. Zvyagilskaya; Vera Dugina; Domnina Lv; Fetisova Ek; Konstantin G. Lyamzaev; Mikhail Yu. Vyssokikh; Boris V. Chernyak; Maxim V. Skulachev; Vladimir P. Skulachev; Viktor A. Sadovnichii

Since the times of the Bible, an extract of black cumin seeds was used as a medicine to treat many human pathologies. Thymoquinone (2‐demethylplastoquinone derivative) was identified as an active antioxidant component of this extract. Recently, it was shown that conjugates of plastoquinone and penetrating cations are potent mitochondria‐targeted antioxidants effective in treating a large number of age‐related pathologies. This review summarizes new data on the antioxidant and some other properties of membrane‐penetrating cationic compounds where 2‐demethylplastoquinone substitutes for plastoquinone. It was found that such a substitution significantly increases a window between anti‐ and prooxidant concentrations of the conjugates. Like the original plastoquinone derivatives, the novel compounds are easily reduced by the respiratory chain, penetrate through model and natural membranes, specifically accumulate in mitochondria in an electrophoretic fashion, and strongly inhibit H2O2‐induced apoptosis at pico‐ and nanomolar concentrations in cell cultures. At present, cationic demethylplastoquinone derivatives appear to be the most promising mitochondria‐targeted drugs of the quinone series.


FEBS Letters | 2001

Oligomeric C-terminal truncated Bax preferentially releases cytochrome c but not adenylate kinase from mitochondria, outer membrane vesicles and proteoliposomes

Mariusz R. Wieęckowski; Mikhail Yu. Vyssokikh; Dorota Dymkowska; Bruno Antonsson; Dieter Brdiczka; Lech Wojtczak

The mechanism by which the proapoptotic protein Bax releases cytochrome c from mitochondria is not fully understood. The present work approaches this problem using C‐terminal truncated oligomeric Bax (BaxΔC). Micromolar concentrations of BaxΔC released cytochrome c from isolated rat heart and liver mitochondria, while the release of adenylate kinase was not significantly affected. BaxΔC also released cytochrome c but not adenylate kinase from outer membrane vesicles filled with these proteins. However, BaxΔC was ineffective in releasing cytochrome c when outer membrane vesicles were obtained in the presence of glycerol, conditions under which the number of contact sites was drastically reduced. BaxΔC did not liberate encapsulated cytochrome c and adenylate kinase from pure phospholipid vesicles or vesicles reconstituted with porin. However, when the hexokinase–porin–adenine nucleotide translocase complex from brain mitochondria was reconstituted in vesicles, BaxΔC released internal cytochrome c but not adenylate kinase. In all these systems, only a small portion of total cytochrome c present in either mitochondria or vesicles could be liberated by BaxΔC. BaxΔC also increased the accessibility of external cytochrome c to either oxidation by complex IV or reduction by complex III in intact liver and heart mitochondria. Conclusions: (1) BaxΔC selectively releases cytochrome c and enables a bidirectional movement of cytochrome c across the outer mitochondrial membrane. (2) A multiprotein complex that resembles the mitochondrial contact sites is a prerequisite for BaxΔC action. (3) A limited pool of cytochrome c becomes the first target for BaxΔC.


FEBS Letters | 1999

Folding and refolding of thermolabile and thermostable bacterial luciferases: the role of DnaKJ heat-shock proteins

Ilia V Manukhov; Gennadii E Eroshnikov; Mikhail Yu. Vyssokikh; Gennadii B Zavilgelsky

Bacterial luciferases are highly suitable test substrates for the analysis of refolding of misfolded proteins, as they are structurally labile and loose activity at 42°C. Heat‐denatured thermolabile Vibrio fischeri luciferase and thermostable Photorhabdus luminescens luciferase were used as substrates. We found that their reactivation requires the activity of the DnaK chaperone system. The DnaKJ chaperones were dispensable in vivo for de novo folding at 30°C of the luciferase, but essential for refolding after a heat‐shock. The rate and yield of DnaKJ refolding of the P. luminescens thermostable luciferase were to a marked degree lower as compared with the V. fischeri thermolabile luciferase. The refolding activity of the DnaKJ chaperones was examined at various temperatures. Between 30 and 37°C, the refolding rates of the V. fischeri luciferase decreased and the reaction reached a complete arrest at temperatures above 40°C. The rate of DnaKJ‐mediated refolding of the thermostable luciferase at first increased between 30 and 37°C and then decreased at the range of 37–44°C. We observed that the rate of DnaKJ‐mediated refolding of the heat‐denatured P. luminescens thermostable luciferase, but not of the thermolabile V. fischeri luciferase, decreased during the prolonged incubation at a high (47°C) temperature. The efficiency and reversibility of protein refolding arrest during and after heat‐shock strongly depended on the stability of the DnaKJ‐denatured luciferase complex. It is supposed that the thermostable luciferase is released during the heat‐shock, whereas the thermolabile luciferase remained bound to the chaperone.

Collaboration


Dive into the Mikhail Yu. Vyssokikh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge