Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Konstantin G. Lyamzaev is active.

Publication


Featured researches published by Konstantin G. Lyamzaev.


Biochemistry | 2008

Mitochondria-Targeted Plastoquinone Derivatives as Tools to Interrupt Execution of the Aging Program. 1. Cationic Plastoquinone Derivatives: Synthesis and in vitro Studies*

Yuri N. Antonenko; Armine V. Avetisyan; L. E. Bakeeva; Boris V. Chernyak; V. A. Chertkov; Domnina Lv; O. Yu. Ivanova; Denis S. Izyumov; L. S. Khailova; Sergey S. Klishin; Galina A. Korshunova; Konstantin G. Lyamzaev; Maria S. Muntyan; O. K. Nepryakhina; Alina A. Pashkovskaya; O. Yu. Pletjushkina; Antonina V. Pustovidko; Vitaly Roginsky; Tatyana I. Rokitskaya; Ruuge Ek; V. B. Saprunova; Inna I. Severina; Ruben A. Simonyan; I. V. Skulachev; Maxim V. Skulachev; N. V. Sumbatyan; I. V. Sviryaeva; Vadim N. Tashlitsky; J. M. Vassiliev; M. Yu. Vyssokikh

Synthesis of cationic plastoquinone derivatives (SkQs) containing positively charged phosphonium or rhodamine moieties connected to plastoquinone by decane or pentane linkers is described. It is shown that SkQs (i) easily penetrate through planar, mitochondrial, and outer cell membranes, (ii) at low (nanomolar) concentrations, posses strong antioxidant activity in aqueous solution, BLM, lipid micelles, liposomes, isolated mitochondria, and cells, (iii) at higher (micromolar) concentrations, show pronounced prooxidant activity, the “window” between anti- and prooxidant concentrations being very much larger than for MitoQ, a cationic ubiquinone derivative showing very much lower antioxidant activity and higher prooxidant activity, (iv) are reduced by the respiratory chain to SkQH2, the rate of oxidation of SkQH2 being lower than the rate of SkQ reduction, and (v) prevent oxidation of mitochondrial cardiolipin by OH·. In HeLa cells and human fibroblasts, SkQs operate as powerful inhibitors of the ROS-induced apoptosis and necrosis. For the two most active SkQs, namely SkQ1 and SkQR1, C1/2 values for inhibition of the H2O2-induced apoptosis in fibroblasts appear to be as low as 1·10−11 and 8·10−13 M, respectively. SkQR1, a fluorescent representative of the SkQ family, specifically stains a single type of organelles in the living cell, i.e. energized mitochondria. Such specificity is explained by the fact that it is the mitochondrial matrix that is the only negatively-charged compartment inside the cell. Assuming that the Δψ values on the outer cell and inner mitochondrial membranes are about 60 and 180 mV, respectively, and taking into account distribution coefficient of SkQ1 between lipid and water (about 13,000: 1), the SkQ1 concentration in the inner leaflet of the inner mitochondrial membrane should be 1.3·108 times higher than in the extracellular space. This explains the very high efficiency of such compounds in experiments on cell cultures. It is concluded that SkQs are rechargeable, mitochondria-targeted antioxidants of very high efficiency and specificity. Therefore, they might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo.


Biochimica et Biophysica Acta | 2010

Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs)

Vladimir P. Skulachev; Yury Nikolaevich Antonenko; Dmitry A. Cherepanov; Boris V. Chernyak; Denis S. Izyumov; Ludmila S. Khailova; Sergey S. Klishin; Galina A. Korshunova; Konstantin G. Lyamzaev; Olga Yu. Pletjushkina; Vitaly Roginsky; Tatiana I. Rokitskaya; Fedor F. Severin; Inna I. Severina; Ruben A. Simonyan; Maxim V. Skulachev; Natalia V. Sumbatyan; E. I. Sukhanova; Vadim N. Tashlitsky; T. A. Trendeleva; Mikhail Yu. Vyssokikh; R. A. Zvyagilskaya

The present state of the art in studies on the mechanisms of antioxidant activities of mitochondria-targeted cationic plastoquinone derivatives (SkQs) is reviewed. Our experiments showed that these compounds can operate as antioxidants in two quite different ways, i.e. (i) by preventing peroxidation of cardiolipin [Antonenko et al., Biochemistry (Moscow) 73 (2008) 1273-1287] and (ii) by fatty acid cycling resulting in mild uncoupling that inhibits the formation of reactive oxygen species (ROS) in mitochondrial State 4 [Severin et al. Proc. Natl. Acad. Sci. USA 107 (2009), 663-668]. The quinol and cationic moieties of SkQ are involved in cases (i) and (ii), respectively. In case (i) SkQH2 interrupts propagation of chain reactions involved in peroxidation of unsaturated fatty acid residues in cardiolipin, the formed SkQ- being reduced back to SkQH2 by heme bH of complex III in an antimycin-sensitive way. Molecular dynamics simulation showed that there are two stable conformations of SkQ1 with the quinol residue localized near peroxyl radicals at C9 or C13 of the linoleate residue in cardiolipin. In mechanism (ii), fatty acid cycling mediated by the cationic SkQ moiety is involved. It consists of (a) transmembrane movement of the fatty acid anion/SkQ cation pair and (b) back flows of free SkQ cation and protonated fatty acid. The cycling results in a protonophorous effect that was demonstrated in planar phospholipid membranes and liposomes. In mitochondria, the cycling gives rise to mild uncoupling, thereby decreasing membrane potential and ROS generation coupled to reverse electron transport in the respiratory chain. In yeast cells, dodecyltriphenylphosphonium (capital ES, Cyrillic12TPP), the cationic part of SkQ1, induces uncoupling that is mitochondria-targeted since capital ES, Cyrillic12TPP is specifically accumulated in mitochondria and increases the H+ conductance of their inner membrane. The conductance of the outer cell membrane is not affected by capital ES, Cyrillic12TPP.


FEBS Letters | 2013

In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives.

Inna I. Severina; Fedor F. Severin; Galina A. Korshunova; N. V. Sumbatyan; Tatyana M. Ilyasova; Ruben A. Simonyan; A. G. Rogov; T. A. Trendeleva; R. A. Zvyagilskaya; Vera Dugina; Domnina Lv; Fetisova Ek; Konstantin G. Lyamzaev; Mikhail Yu. Vyssokikh; Boris V. Chernyak; Maxim V. Skulachev; Vladimir P. Skulachev; Viktor A. Sadovnichii

Since the times of the Bible, an extract of black cumin seeds was used as a medicine to treat many human pathologies. Thymoquinone (2‐demethylplastoquinone derivative) was identified as an active antioxidant component of this extract. Recently, it was shown that conjugates of plastoquinone and penetrating cations are potent mitochondria‐targeted antioxidants effective in treating a large number of age‐related pathologies. This review summarizes new data on the antioxidant and some other properties of membrane‐penetrating cationic compounds where 2‐demethylplastoquinone substitutes for plastoquinone. It was found that such a substitution significantly increases a window between anti‐ and prooxidant concentrations of the conjugates. Like the original plastoquinone derivatives, the novel compounds are easily reduced by the respiratory chain, penetrate through model and natural membranes, specifically accumulate in mitochondria in an electrophoretic fashion, and strongly inhibit H2O2‐induced apoptosis at pico‐ and nanomolar concentrations in cell cultures. At present, cationic demethylplastoquinone derivatives appear to be the most promising mitochondria‐targeted drugs of the quinone series.


Cell Death & Differentiation | 2005

Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion

O. Yu. Pletjushkina; Fetisova Ek; Konstantin G. Lyamzaev; O. Yu. Ivanova; Domnina Lv; M. Yu. Vyssokikh; Antonina V. Pustovidko; Jury M. Vasiliev; Michael P. Murphy; Boris V. Chernyak; Vladimir P. Skulachev

Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion


Biochemistry | 2006

Hydrogen peroxide produced inside mitochondria takes part in cell-to-cell transmission of apoptotic signal

O. Yu. Pletjushkina; Fetisova Ek; Konstantin G. Lyamzaev; O. Yu. Ivanova; Domnina Lv; M. Yu. Vyssokikh; Antonina V. Pustovidko; Andrei V. Alexeevski; D. A. Alexeevski; Jury M. Vasiliev; Michael P. Murphy; Boris V. Chernyak; Vladimir P. Skulachev

In monolayer of HeLa cells treated with tumor necrosis factor (TNF), apoptotic cells formed clusters indicating possible transmission of apoptotic signal via the culture media. To investigate this phenomenon, a simple method of enabling two cell cultures to interact has been employed. Two coverslips were placed side by side in a Petri dish, one coverslip covered with apoptogen-treated cells (the inducer) and another with non-treated cells (the recipient). TNF, staurosporine, or H2O2 treatment of the inducer cells is shown to initiate apoptosis on the recipient coverslip. This effect is increased by a catalase inhibitor aminotriazole and is arrested by addition of catalase or by pre-treatment of either the inducer or the recipient cells with nanomolar concentrations of mitochondria-targeted cationic antioxidant MitoQ (10-(6′-ubiquinolyl)decyltriphenylphosphonium), which specifically arrests H2O2-induced apoptosis. The action of MitoQ is abolished by an uncoupler preventing accumulation of MitoQ in mitochondria. It is concluded that reactive oxygen species (ROS) produced by mitochondria in the apoptotic cells initiate the release of H2O2 from these cells. The H2O2 released is employed as a long-distance cell suicide messenger. In processing of such a signal by the recipient cells, mitochondrial ROS production is also involved. It is suggested that the described phenomenon may be involved in expansion of the apoptotic region around a damaged part of the tissue during heart attack or stroke as well as in “organoptosis”, i.e. disappearance of organs during ontogenesis.


Biochemical Society Transactions | 2004

Selective elimination of mitochondria from living cells induced by inhibitors of bioenergetic functions.

Konstantin G. Lyamzaev; Olga Yu. Pletjushkina; V. B. Saprunova; L. E. Bakeeva; Boris V. Chernyak; Vladimir P. Skulachev

The inhibitors of oxidative phosphorylation induced fragmentation of mitochondria without any signs of apoptosis in CV-1 and HeLa cells. Prolonged treatment with the uncouplers (alone or in combination with the inhibitors of respiration) caused perinuclear clusterization of mitochondria, followed by their selective elimination. The fraction of mitochondria-depleted cells remained viable.


Biochemistry | 2010

Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria-targeted antioxidants--the "Skulachev-ion" derivatives.

Denis S. Izyumov; Domnina Lv; O. K. Nepryakhina; Armine V. Avetisyan; S. A. Golyshev; O. Y. Ivanova; M. V. Korotetskaya; Konstantin G. Lyamzaev; Olga Yu. Pletjushkina; E. N. Popova; Boris V. Chernyak

Production of reactive oxygen species (ROS) in mitochondria was studied using the novel mitochondria-targeted antioxidants (SkQ) in cultures of human cells. It was shown that SkQ rapidly (1–2 h) and selectively accumulated in mitochondria and prevented oxidation of mitochondrial components under oxidative stress induced by hydrogen peroxide. At nanomolar concentrations, SkQ inhibited oxidation of glutathione, fragmentation of mitochondria, and translocation of Bax from cytosol into mitochondria. The last effect could be related to prevention of conformational change in the adenine nucleotide transporter, which depends on oxidation of critical thiols. Mitochondria-targeted antioxidants at nanomolar concentrations prevented accumulation of ROS and cell death under oxidative stress. These effects required 24 h or more (depending on the cell type) preincubation, and this was not related to slow induction of endogenous antioxidant systems. It is suggested that SkQ slowly accumulates in a small subpopulation of mitochondria that have decreased membrane potential and produce the major part of ROS under oxidative stress. This population was visualized in the cells using potential-sensitive dye. The possible role of the small fraction of “bad” mitochondria in cell physiology is discussed.


Pharmaceutical Research | 2011

Novel mitochondria-targeted antioxidants: plastoquinone conjugated with cationic plant alkaloids berberine and palmatine.

Konstantin G. Lyamzaev; Antonina V. Pustovidko; Ruben A. Simonyan; Tatyana I. Rokitskaya; Domnina Lv; O. Y. Ivanova; Inna I. Severina; Natalia V. Sumbatyan; Galina A. Korshunova; Vadim N. Tashlitsky; Vitaly Roginsky; Yuriy N. Antonenko; Maxim V. Skulachev; Boris V. Chernyak; Vladimir P. Skulachev

ABSTRACTPurposeTo develop effective mitochondria-targeted antioxidants composed entirely of natural constituents.MethodsNovel mitochondria-targeted antioxidants were synthesized containing plant electron carrier and antioxidant plastoquinone conjugated by nonyloxycarbonylmethyl residue with berberine or palmatine, penetrating cations of plant origin. These compounds, SkQBerb and SkQPalm, were tested in model planar phospholipid membranes and micelles, liposomes, isolated mitochondria and living cells.ResultsSkQBerb and SkQPalm penetrated across planar bilayer phospholipid membrane in their cationic forms and accumulated in mitochondria isolated or in living human cells in culture. Reduced forms of SkQBerb and SkQPalm as well as C10Berb and C10Palm (SkQBerb and SkQPalm analogs lacking plastoquinol moiety) revealed radical scavenging activity in lipid micelles and liposomes, while oxidized forms were inactive. In isolated mitochondria and in living cells, berberine and palmatine moieties were not reduced, so antioxidant activity of C10Berb and C10Palm was not detected. SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations; their prooxidant effect was observed at 1,000 times higher concentrations. In human cell cuture, nanomolar SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by exogenous hydrogen peroxide.ConclusionThis is the first successful attempt to construct mitochondria-targeted antioxidants composed entirely of natural components, namely plastoquinone, nonyl, acetyl and berberine or palmatine residues.


Mitochondrion | 2001

Preservation of native properties of mitochondria in rat liver homogenate.

M.N Kondrashova; N.I Fedotcheva; I.R Saakyan; T.V Sirota; Konstantin G. Lyamzaev; M.V Kulikova; A.V Temnov

A protocol is developed for preparation of concentrated rat liver homogenate preserving assemblies of mitochondria in isotonic KCl under 0 and 15 degrees C. Assemblies preserve ability for self-organization during storage in homogenate. All key energy functions of mitochondria can be investigated in such a homogenate. Oxidative phosphorylation and membrane potential are stable for 5-7 h and can be still observed on the next day. Substrate-level phosphorylation is better pronounced for mitochondria in KCl than in sucrose medium while Ca2+ capacity is greater and lipid peroxidation is much lower. Sucrose addition impairs these functions. The rate of phosphorylating respiration is lower in large assemblies and higher in small. Transition from large to small assemblies corresponds to the transition from quiescent state of animal to adrenaline induced active state. The proposed method is particularly convenient for clinical investigations with small bioptates.


Radiation Research | 2015

Radioprotective Effects of Mitochondria-Targeted Antioxidant SkQR1

Fetisova Ek; Margarita M. Antoschina; Varvara D. Cherepanynets; Denis S. Izumov; Igor Kireev; Roman I. Kireev; Konstantin G. Lyamzaev; Nikolay I. Riabchenko; Boris V. Chernyak; Vladimir P. Skulachev

We show here that mitochondria-targeted antioxidant composed of plastoquinone conjugated through hydrocarbon linker with cationic rhodamine 19 (SkQR1) protected against nuclear DNA damage induced by gamma radiation in K562 erythroleukemia cells. We also demonstrate that SkQR1 prevented the early (1 h postirradiation) accumulation of phosphorylated histone H2AX (γ-H2AX) an indicator of DNA double-strand break formation, as well as the radiation-induced increase in chromosomal aberrations. These data suggested that nuclear DNA damage induced by gamma radiation may be mediated by mitochondrial reactive oxygen species (ROS) production. We show that SkQR1 suppressed delayed accumulation of ROS 32 h after irradiation probably by inhibiting mitochondrial ROS-induced ROS release mechanisms. This suggests that mitochondria-targeted antioxidants may protect cells from the late consequences of radiation exposure related to delayed oxidative stress. We have previously reported that SkQRl is the substrate of multidrug resistance pump P-glycoproten (Pgp 170) and selectively protects Pgp 170-negative cells against oxidative stress. In line with this finding, we demonstrate here that SkQR1 did not protect Pgp170-positive K562 subline against DNA damage induced by gamma radiation. The selective radioprotection of normal Pgp 170-negative cells by mitochondria-targeted antioxidants could be a promising strategy to increase the efficiency of radiotherapy for multidrug-resistant tumors.

Collaboration


Dive into the Konstantin G. Lyamzaev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Domnina Lv

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge