Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikita Suyama is active.

Publication


Featured researches published by Mikita Suyama.


Nature | 2005

Initial sequence of the chimpanzee genome and comparison with the human genome

Tarjei S. Mikkelsen; LaDeana W. Hillier; Evan E. Eichler; Michael C. Zody; David B. Jaffe; Shiaw-Pyng Yang; Wolfgang Enard; Ines Hellmann; Kerstin Lindblad-Toh; Tasha K. Altheide; Nicoletta Archidiacono; Peer Bork; Jonathan Butler; Jean L. Chang; Ze Cheng; Asif T. Chinwalla; Pieter J. de Jong; Kimberley D. Delehaunty; Catrina C. Fronick; Lucinda L. Fulton; Yoav Gilad; Gustavo Glusman; Sante Gnerre; Tina Graves; Toshiyuki Hayakawa; Karen E. Hayden; Xiaoqiu Huang; Hongkai Ji; W. James Kent; Mary Claire King

Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.


DNA Research | 1998

Prediction of the coding sequences of unidentified human genes. X. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro

Ken Ichi Ishikawa; Takahiro Nagase; Mikita Suyama; Nobuyuki Miyajima; Ayako Tanaka; Hirokazu Kotani; Nobuo Nomura; Osamu Ohara

As an extension of our cDNA analysis for deducing the coding sequences of unidentified human genes, we have newly determined the sequences of 100 cDNA clones from a set of size-fractionated human brain cDNA libraries, and predicted the coding sequences of the corresponding genes, named KIAA0611 to KIAA0710. In vitro transcription-coupled translation assay was applied as the first screening to select cDNA clones which produce proteins with apparent molecular mass of 50 kDa and over. One hundred unidentified cDNA clones thus selected were then subjected to sequencing of entire inserts. The average size of the inserts and corresponding open reading frames was 4.9 kb and 2.8 kb (922 amino acid residues), respectively. Computer search of the sequences against the public databases indicated that predicted coding sequences of 87 genes were similar to those of known genes, 62% of which (54 genes) were categorized as proteins related to cell signaling/communication, cell structure/motility and nucleic acid management. The expression profiles in 10 human tissues of all the clones characterized in this study were examined by reverse transcription-coupled polymerase chain reaction and the chromosomal locations of the clones were determined by using human-rodent hybrid panels.


Nucleic Acids Research | 2006

PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments

Mikita Suyama; David Torrents; Peer Bork

PAL2NAL is a web server that constructs a multiple codon alignment from the corresponding aligned protein sequences. Such codon alignments can be used to evaluate the type and rate of nucleotide substitutions in coding DNA for a wide range of evolutionary analyses, such as the identification of levels of selective constraint acting on genes, or to perform DNA-based phylogenetic studies. The server takes a protein sequence alignment and the corresponding DNA sequences as input. In contrast to other existing applications, this server is able to construct codon alignments even if the input DNA sequence has mismatches with the input protein sequence, or contains untranslated regions and polyA tails. The server can also deal with frame shifts and inframe stop codons in the input models, and is thus suitable for the analysis of pseudogenes. Another distinct feature is that the user can specify a subregion of the input alignment in order to specifically analyze functional domains or exons of interest. The PAL2NAL server is available at .


Science | 2009

Transcriptome Complexity in a Genome-Reduced Bacterium

Marc Güell; Vera van Noort; Eva Yus; Wei-Hua Chen; Justine Leigh-Bell; Konstantinos Michalodimitrakis; Takuji Yamada; Manimozhiyan Arumugam; Tobias Doerks; Sebastian Kühner; Michaela Rode; Mikita Suyama; Sabine Schmidt; Anne-Claude Gavin; Peer Bork; Luis Serrano

Simply Mycoplasma The bacterium Mycoplasma pneumoniae, a human pathogen, has a genome of reduced size and is one of the simplest organisms that can reproduce outside of host cells. As such, it represents an excellent model organism in which to attempt a systems-level understanding of its biological organization. Now three papers provide a comprehensive and quantitative analysis of the proteome, the metabolic network, and the transcriptome of M. pneumoniae (see the Perspective by Ochman and Raghavan). Anticipating what might be possible in the future for more complex organisms, Kühner et al. (p. 1235) combine analysis of protein interactions by mass spectrometry with extensive structural information on M. pneumoniae proteins to reveal how proteins work together as molecular machines and map their organization within the cell by electron tomography. The manageable genome size of M. pneumoniae allowed Yus et al. (p. 1263) to map the metabolic network of the organism manually and validate it experimentally. Analysis of the network aided development of a minimal medium in which the bacterium could be cultured. Finally, G‡ell et al. (p. 1268) applied state-of-the-art sequencing techniques to reveal that this “simple” organism makes extensive use of noncoding RNAs and has exon- and intron-like structure within transcriptional operons that allows complex gene regulation resembling that of eukaryotes. Sequencing of a tiny bacterium’s RNA reveals many noncoding RNAs and complex gene regulation reminiscent of eukaryotes. To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previously undescribed, mostly noncoding transcripts, 89 of them in antisense configuration to known genes. We identified 341 operons, of which 139 are polycistronic; almost half of the latter show decaying expression in a staircase-like manner. Under various conditions, operons could be divided into 447 smaller transcriptional units, resulting in many alternative transcripts. Frequent antisense transcripts, alternative transcripts, and multiple regulators per gene imply a highly dynamic transcriptome, more similar to that of eukaryotes than previously thought.


Molecular and Cellular Biology | 2000

TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture.

Andrea Herold; Mikita Suyama; João P. Rodrigues; Isabelle C. Braun; Ulrike Kutay; Maria Carmo-Fonseca; Peer Bork; Elisa Izaurralde

ABSTRACT Vertebrate TAP (also called NXF1) and its yeast orthologue, Mex67p, have been implicated in the export of mRNAs from the nucleus. The TAP protein includes a noncanonical RNP-type RNA binding domain, four leucine-rich repeats, an NTF2-like domain that allows heterodimerization with p15 (also called NXT1), and a ubiquitin-associated domain that mediates the interaction with nucleoporins. Here we show that TAP belongs to an evolutionarily conserved family of proteins that has more than one member in higher eukaryotes. Not only the overall domain organization but also residues important for p15 and nucleoporin interaction are conserved in most family members. We characterize two of four human TAP homologues and show that one of them, NXF2, binds RNA, localizes to the nuclear envelope, and exhibits RNA export activity. NXF3, which does not bind RNA or localize to the nuclear rim, has no RNA export activity. Database searches revealed that although only one p15(nxt) gene is present in the Drosophila melanogaster and Caenorhabditis elegans genomes, there is at least one additional p15 homologue (p15-2 [also called NXT2]) encoded by the human genome. Both human p15 homologues bind TAP, NXF2, and NXF3. Together, our results indicate that the TAP-p15 mRNA export pathway has diversified in higher eukaryotes compared to yeast, perhaps reflecting a greater substrate complexity.


Trends in Genetics | 2001

Evolution of prokaryotic gene order: genome rearrangements in closely related species

Mikita Suyama; Peer Bork

Conservation of gene order in prokaryotes has become important in predicting protein function because, over the evolutionary timescale, genomes are shuffled so that local gene-order conservation reflects the functional constraints within the protein. Here, we compare closely related genomes to identify the rate with which gene order is disrupted and to infer the genes involved in the genome rearrangement.


PLOS Genetics | 2014

Genome-Wide Analysis of DNA Methylation Dynamics during Early Human Development

Hiroaki Okae; Hatsune Chiba; Hitoshi Hiura; Hirotaka Hamada; Akiko Sato; Takafumi Utsunomiya; Hiroyuki Kikuchi; Hiroaki Yoshida; Atsushi Tanaka; Mikita Suyama; Takahiro Arima

DNA methylation is globally reprogrammed during mammalian preimplantation development, which is critical for normal development. Recent reduced representation bisulfite sequencing (RRBS) studies suggest that the methylome dynamics are essentially conserved between human and mouse early embryos. RRBS is known to cover 5–10% of all genomic CpGs, favoring those contained within CpG-rich regions. To obtain an unbiased and more complete representation of the methylome during early human development, we performed whole genome bisulfite sequencing of human gametes and blastocysts that covered>70% of all genomic CpGs. We found that the maternal genome was demethylated to a much lesser extent in human blastocysts than in mouse blastocysts, which could contribute to an increased number of imprinted differentially methylated regions in the human genome. Global demethylation of the paternal genome was confirmed, but SINE-VNTR-Alu elements and some other tandem repeat-containing regions were found to be specifically protected from this global demethylation. Furthermore, centromeric satellite repeats were hypermethylated in human oocytes but not in mouse oocytes, which might be explained by differential expression of de novo DNA methyltransferases. These data highlight both conserved and species-specific regulation of DNA methylation during early mammalian development. Our work provides further information critical for understanding the epigenetic processes underlying differentiation and pluripotency during early human development.


EMBO Reports | 2000

Prediction of structural domains of TAP reveals details of its interaction with p15 and nucleoporins.

Mikita Suyama; Tobias Doerks; Isabelle C. Braun; Michael Sattler; Elisa Izaurralde; Peer Bork

Vertebrate TAP is a nuclear mRNA export factor homologous to yeast Mex67p. The middle domain of TAP binds directly to p15, a protein related to the nuclear transport factor 2 (NTF2), whereas its C‐terminal domain interacts with various nucleoporins, the components of the nuclear pore complex (NPC). Here, we report that the middle domain of TAP is also similar to NTF2, as well as to regions in Ras‐GAP SH3 domain binding protein (G3BP) and some plant protein kinases. Based on the known three‐dimensional structure of NTF2 homodimer, a heterodimerization model of TAP and p15 could be inferred. This model was confirmed by site‐directed mutagenesis of residues located at the dimer interface. Furthermore, the C‐terminus of TAP was found to contain a ubiquitin‐associated (UBA) domain. By site‐directed mutagenesis we show that a conserved loop in this domain plays an essential role in mediating TAP–nucleoporin interaction.


Nature | 2016

CHD8 haploinsufficiency results in autistic-like phenotypes in mice

Yuta Katayama; Masaaki Nishiyama; Hirotaka Shoji; Yasuyuki Ohkawa; Atsuki Kawamura; Tetsuya Sato; Mikita Suyama; Toru Takumi; Tsuyoshi Miyakawa; Keiichi I. Nakayama

Autism spectrum disorder (ASD) comprises a range of neurodevelopmental disorders characterized by deficits in social interaction and communication as well as by restricted and repetitive behaviours. ASD has a strong genetic component with high heritability. Exome sequencing analysis has recently identified many de novo mutations in a variety of genes in individuals with ASD, with CHD8, a gene encoding a chromatin remodeller, being most frequently affected. Whether CHD8 mutations are causative for ASD and how they might establish ASD traits have remained unknown. Here we show that mice heterozygous for Chd8 mutations manifest ASD-like behavioural characteristics including increased anxiety, repetitive behaviour, and altered social behaviour. CHD8 haploinsufficiency did not result in prominent changes in the expression of a few specific genes but instead gave rise to small but global changes in gene expression in the mouse brain, reminiscent of those in the brains of patients with ASD. Gene set enrichment analysis revealed that neurodevelopment was delayed in the mutant mouse embryos. Furthermore, reduced expression of CHD8 was associated with abnormal activation of RE-1 silencing transcription factor (REST), which suppresses the transcription of many neuronal genes. REST activation was also observed in the brains of humans with ASD, and CHD8 was found to interact physically with REST in the mouse brain. Our results are thus consistent with the notion that CHD8 haploinsufficiency is a highly penetrant risk factor for ASD, with disease pathogenesis probably resulting from a delay in neurodevelopment.


BMC Genomics | 2015

DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis

Naoki Kubo; Hidehiro Toh; Kenjiro Shirane; Takayuki Shirakawa; Hisato Kobayashi; Tetsuya Sato; Hidetoshi Sone; Yasuyuki Sato; Shin Ichi Tomizawa; Yoshinori Tsurusaki; Hiroki Shibata; Hirotomo Saitsu; Yutaka Suzuki; Naomichi Matsumoto; Mikita Suyama; Tomohiro Kono; Kazuyuki Ohbo; Hiroyuki Sasaki

BackgroundIn the male germline, neonatal prospermatogonia give rise to spermatogonia, which include stem cell population (undifferentiated spermatogonia) that supports continuous spermatogenesis in adults. Although the levels of DNA methyltransferases change dynamically in the neonatal and early postnatal male germ cells, detailed genome-wide DNA methylation profiles of these cells during the stem cell formation and differentiation have not been reported.ResultsTo understand the regulation of spermatogonial stem cell formation and differentiation, we examined the DNA methylation and gene expression dynamics of male mouse germ cells at the critical stages: neonatal prospermatogonia, and early postntal (day 7) undifferentiated and differentiating spermatogonia. We found large partially methylated domains similar to those found in cancer cells and placenta in all these germ cells, and high levels of non-CG methylation and 5-hydroxymethylcytosines in neonatal prospermatogonia. Although the global CG methylation levels were stable in early postnatal male germ cells, and despite the reported scarcity of differential methylation in the adult spermatogonial stem cells, we identified many regions showing stage-specific differential methylation in and around genes important for stem cell function and spermatogenesis. These regions contained binding sites for specific transcription factors including the SOX family members.ConclusionsOur findings show a distinctive and dynamic regulation of DNA methylation during spermatogonial stem cell formation and differentiation in the neonatal and early postnatal testes. Furthermore, we revealed a unique accumulation and distribution of non-CG methylation and 5hmC marks in neonatal prospermatogonia. These findings contrast with the reported scarcity of differential methylation in adult spermatogonial stem cell differentiation and represent a unique phase of male germ cell development.

Collaboration


Dive into the Mikita Suyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peer Bork

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Torrents

Barcelona Supercomputing Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge