Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milan Sonka is active.

Publication


Featured researches published by Milan Sonka.


Magnetic Resonance Imaging | 2012

3D Slicer as an image computing platform for the Quantitative Imaging Network

Andriy Fedorov; Reinhard Beichel; Jayashree Kalpathy-Cramer; Julien Finet; Jean Christophe Fillion-Robin; Sonia Pujol; Christian Bauer; Dominique Jennings; Fiona M. Fennessy; Milan Sonka; John M. Buatti; Stephen R. Aylward; James V. Miller; Steve Pieper; Ron Kikinis

Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open-source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future directions that can further facilitate development and validation of imaging biomarkers using 3D Slicer.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2006

Optimal Surface Segmentation in Volumetric Images-A Graph-Theoretic Approach

Kang Li; Xiaodong Wu; Danny Z. Chen; Milan Sonka

Efficient segmentation of globally optimal surfaces representing object boundaries in volumetric data sets is important and challenging in many medical image analysis applications. We have developed an optimal surface detection method capable of simultaneously detecting multiple interacting surfaces, in which the optimality is controlled by the cost functions designed for individual surfaces and by several geometric constraints defining the surface smoothness and interrelations. The method solves the surface segmentation problem by transforming it into computing a minimum s{\hbox{-}} t cut in a derived arc-weighted directed graph. The proposed algorithm has a low-order polynomial time complexity and is computationally efficient. It has been extensively validated on more than 300 computer-synthetic volumetric images, 72 CT-scanned data sets of different-sized plexiglas tubes, and tens of medical images spanning various imaging modalities. In all cases, the approach yielded highly accurate results. Our approach can be readily extended to higher-dimensional image segmentation.


IEEE Reviews in Biomedical Engineering | 2010

Retinal Imaging and Image Analysis

M D Abràmoff; Mona K. Garvin; Milan Sonka

Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships.Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships.


Circulation | 2003

Effect of Endothelial Shear Stress on the Progression of Coronary Artery Disease, Vascular Remodeling, and In-Stent Restenosis in Humans In Vivo 6-Month Follow-Up Study

Peter H. Stone; Ahmet U. Coskun; Scott Kinlay; Maureen E. Clark; Milan Sonka; Andreas Wahle; Olusegun J. Ilegbusi; Yerem Yeghiazarians; Jeffrey J. Popma; John Orav; Richard E. Kuntz; Charles L. Feldman

Background—Native atherosclerosis and in-stent restenosis are focal and evolve independently. The endothelium controls local arterial responses by transduction of shear stress. Characterization of endothelial shear stress (ESS) may allow for prediction of progression of atherosclerosis and in-stent restenosis. Methods and Results—By using intracoronary ultrasound, biplane coronary angiography, and measurement of coronary blood flow, we represented the artery in accurate 3D space and determined detailed characteristics of ESS and arterial wall/plaque morphology. Patients who underwent stent implantation and who had another artery with luminal obstruction <50% underwent intravascular profiling initially and after 6-month follow-up. Twelve arteries in 8 patients were studied: 6 native and 6 stented arteries. In native arteries, regions of abnormally low baseline ESS exhibited a significant increase in plaque thickness and enlargement of the outer vessel wall, such that lumen radius remained unchanged (outward remodeling). Regions of physiological ESS showed little change. Regions with increased ESS exhibited outward remodeling with normalization of ESS. In stented arteries, there was an increase in intima-medial thickness, a decrease in lumen radius, and an increase in ESS at all levels of baseline ESS. Conclusions—The present study represents the first experience in humans relating ESS to subsequent outcomes in native and stented arteries. Regions of low ESS develop progressive atherosclerosis and outward remodeling, areas of physiological ESS remain quiescent, and areas of increased ESS exhibit outward remodeling. ESS may have a limited role in in-stent restenosis. This technology can predict areas of minor plaque likely to exhibit progression of atherosclerosis.


IEEE Transactions on Medical Imaging | 2002

3-D active appearance models: segmentation of cardiac MR and ultrasound images

Steven C. Mitchell; Johan G. Bosch; Boudewijn P. F. Lelieveldt; R.J. van der Geest; J.H.C. Reiber; Milan Sonka

A model-based method for three-dimensional image segmentation was developed and its performance assessed in segmentation of volumetric cardiac magnetic resonance (MR) images and echocardiographic temporal image sequences. Comprehensive design of a three-dimensional (3-D) active appearance model (AAM) is reported for the first time as an involved extension of the AAM framework introduced by Cootes et al. The models behavior is learned from manually traced segmentation examples during an automated training stage. Information about shape and image appearance of the cardiac structures is contained in a single model. This ensures a spatially and/or temporally consistent segmentation of three-dimensional cardiac images. The clinical potential of the 3-D AAM is demonstrated in short-axis cardiac MR images and four-chamber echocardiographic sequences. The methods performance was assessed by comparison with manually identified independent standards in 56 clinical MR and 64 clinical echo image sequences. The AAM method showed good agreement with the independent standard using quantitative indexes of border positioning errors, endo- and epicardial volumes, and left ventricular mass. In MR, the endocardial volumes, epicardial volumes, and left ventricular wall mass correlation coefficients between manual and AAM were R/sup 2/=0.94,0.97,0.82, respectively. For echocardiographic analysis, the area correlation was R/sup 2/=0.79. The AAM method shows high promise for successful application to MR and echocardiographic image analysis in a clinical setting.


IEEE Transactions on Medical Imaging | 2009

Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images

Mona K. Garvin; Michael D. Abràmoff; Xiaodong Wu; Stephen R. Russell; Trudy L. Burns; Milan Sonka

With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69 plusmn 2.41 mum was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71 plusmn 1.98 mum.


IEEE Transactions on Medical Imaging | 2002

Automatic segmentation of echocardiographic sequences by active appearance motion models

Johan G. Bosch; Steven C. Mitchell; Boudewijn P. F. Lelieveldt; Francisca Nijland; Otto Kamp; Milan Sonka; Johan H. C. Reiber

A novel extension of active appearance models (AAMs) for automated border detection in echocardiographic image sequences is reported. The active appearance motion model (AAMM) technique allows fully automated robust and time-continuous delineation of left ventricular (LV) endocardial contours over the full heart cycle with good results. Nonlinear intensity normalization was developed and employed to accommodate ultrasound-specific intensity distributions. The method was trained and tested on 16-frame phase-normalized transthoracic four-chamber sequences of 129 unselected infarct patients, split randomly into a training set (n=65) and a test set (n=64). Borders were compared to expert drawn endocardial contours. On the test set, fully automated AAMM performed well in 97% of the cases (average distance between manual and automatic landmark points was 3.3 mm, comparable to human interobserver variabilities). The ultrasound-specific intensity normalization proved to be of great value for good results in echocardiograms. The AAMM was significantly more accurate than an equivalent set of two-dimensional AAMs.


IEEE Transactions on Medical Imaging | 2005

Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans

Juerg Tschirren; Eric A. Hoffman; Geoffrey McLennan; Milan Sonka

The segmentation of the human airway tree from volumetric computed tomography (CT) images builds an important step for many clinical applications and for physiological studies. Previously proposed algorithms suffer from one or several problems: leaking into the surrounding lung parenchyma, the need for the user to manually adjust parameters, excessive runtime. Low-dose CT scans are increasingly utilized in lung screening studies, but segmenting them with traditional airway segmentation algorithms often yields less than satisfying results. In this paper, a new airway segmentation method based on fuzzy connectivity is presented. Small adaptive regions of interest are used that follow the airway branches as they are segmented. This has several advantages. It makes it possible to detect leaks early and avoid them, the segmentation algorithm can automatically adapt to changing image parameters, and the computing time is kept within moderate values. The new method is robust in the sense that it works on various types of scans (low-dose and regular dose, normal subjects and diseased subjects) without the need for the user to manually adjust any parameters. Comparison with a commonly used region-grow segmentation algorithm shows that the newly proposed method retrieves a significantly higher count of airway branches. A method that conducts accurate cross-sectional airway measurements on airways is presented as an additional processing step. Measurements are conducted in the original gray-level volume. Validation on a phantom shows that subvoxel accuracy is achieved for all airway sizes and airway orientations.


IEEE Transactions on Medical Imaging | 1995

Segmentation of intravascular ultrasound images: a knowledge-based approach

Milan Sonka; Xiangmin Zhang; Maria Siebes; Mark S. Bissing; Steven C. DeJong; Steve M. Collins; Charles R. McKay

Intravascular ultrasound imaging of coronary arteries provides important information about coronary lumen, wall, and plaque characteristics. Quantitative studies of coronary atherosclerosis using intravascular ultrasound and manual identification of wall and plaque borders are limited by the need for observers with substantial experience and the tedious nature of manual border detection. We have developed a method for segmentation of intravascular ultrasound images that identifies the internal and external elastic laminae and the plaque-lumen interface. The border detection algorithm was evaluated in a set of 38 intravascular ultrasound images acquired from fresh cadaveric hearts using a 30 MHz imaging catheter. To assess the performance of our border detection method we compared five quantitative measures of arterial anatomy derived from computer-detected borders with measures derived from borders manually defined by expert observers. Computer-detected and observer-defined lumen areas correlated very well (r=0.96, y=1.02x+0.52), as did plaque areas (r=0.95, y=1.07x-0.48), and percent area stenosis (r=0.93, y=0.99x-1.34.) Computer-derived segmental plaque thickness measurements were highly accurate. Our knowledge-based intravascular ultrasound segmentation method shows substantial promise for the quantitative analysis of in vivo intravascular ultrasound image data.


Computer Vision and Image Understanding | 1996

A Fully Parallel 3D Thinning Algorithm and Its Applications

C.Min Ma; Milan Sonka

A thinning algorithm is a connectivity preserving process which is applied to erode an object layer by layer until only a “skeleton” is left. Generally, it is difficult to prove that a 3D parallel thinning algorithm preserves connectivity. Sufficient conditions which can simplify such proofs were proposed recently inCVGIP: Image Understanding(59, No. 3 (1994), 328?339). One of the purposes of this paper is to propose a connectivity preserving fully parallel 3D thinning algorithm. The other purpose is to show how to use the sufficient conditions to prove a 3D parallel thinning algorithm to be connectivity preserving. By this demonstration, a new generation of 3D parallel thinning algorithms can be designed and proved to preserve connectivity relatively easily.

Collaboration


Dive into the Milan Sonka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Wahle

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric A. Hoffman

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Kovarnik

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Geoffrey McLennan

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge