Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey McLennan is active.

Publication


Featured researches published by Geoffrey McLennan.


The New England Journal of Medicine | 2010

A Randomized Study of Endobronchial Valves for Advanced Emphysema

Frank C. Sciurba; Armin Ernst; Felix J.F. Herth; Charlie Strange; Gerard J. Criner; Charles Hugo Marquette; Kevin L. Kovitz; Richard P. Chiacchierini; Jonathan G. Goldin; Geoffrey McLennan

BACKGROUND Endobronchial valves that allow air to escape from a pulmonary lobe but not enter it can induce a reduction in lobar volume that may thereby improve lung function and exercise tolerance in patients with pulmonary hyperinflation related to advanced emphysema. METHODS We compared the safety and efficacy of endobronchial-valve therapy in patients with heterogeneous emphysema versus standard medical care. Efficacy end points were percent changes in the forced expiratory volume in 1 second (FEV1) and the 6-minute walk test on intention-to-treat analysis. We assessed safety on the basis of the rate of a composite of six major complications. RESULTS Of 321 enrolled patients, 220 were randomly assigned to receive endobronchial valves (EBV group) and 101 to receive standard medical care (control group). At 6 months, there was an increase of 4.3% in the FEV1 in the EBV group (an increase of 1.0 percentage point in the percent of the predicted value), as compared with a decrease of 2.5% in the control group (a decrease of 0.9 percentage point in the percent of the predicted value). Thus, there was a mean between-group difference of 6.8% in the FEV1 (P=0.005). Roughly similar between-group differences were observed for the 6-minute walk test. At 12 months, the rate of the complications composite was 10.3% in the EBV group versus 4.6% in the control group (P=0.17). At 90 days, in the EBV group, as compared with the control group, there were increased rates of exacerbation of chronic obstructive pulmonary disease (COPD) requiring hospitalization (7.9% vs. 1.1%, P=0.03) and hemoptysis (6.1% vs. 0%, P=0.01). The rate of pneumonia in the target lobe in the EBV group was 4.2% at 12 months. Greater radiographic evidence of emphysema heterogeneity and fissure completeness was associated with an enhanced response to treatment. CONCLUSIONS Endobronchial-valve treatment for advanced heterogeneous emphysema induced modest improvements in lung function, exercise tolerance, and symptoms at the cost of more frequent exacerbations of COPD, pneumonia, and hemoptysis after implantation. (Funded by Pulmonx; ClinicalTrials.gov number, NCT00129584.)


Optics Express | 2005

Practical reconstruction method for bioluminescence tomography

Wenxiang Cong; Ge Wang; Durairaj Kumar; Yi Liu; Ming Jiang; Lihong V. Wang; Eric A. Hoffman; Geoffrey McLennan; Paul B. McCray; Joseph Zabner; Alexander X. Cong

Bioluminescence tomography (BLT) is used to localize and quantify bioluminescent sources in a small living animal. By advancing bioluminescent imaging to a tomographic framework, it helps to diagnose diseases, monitor therapies and facilitate drug development. In this paper, we establish a direct linear relationship between measured surface photon density and an unknown bioluminescence source distribution by using a finite-element method based on the diffusion approximation to the photon propagation in biological tissue. We develop a novel reconstruction algorithm to recover the source distribution. This algorithm incorporates a priori knowledge to define the permissible source region in order to enhance numerical stability and efficiency. Simulations with a numerical mouse chest phantom demonstrate the feasibility of the proposed BLT algorithm and reveal its performance in terms of source location, density, and robustness against noise. Lastly, BLT experiments are performed to identify the location and power of two light sources in a physical mouse chest phantom.


IEEE Transactions on Medical Imaging | 2005

Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans

Juerg Tschirren; Eric A. Hoffman; Geoffrey McLennan; Milan Sonka

The segmentation of the human airway tree from volumetric computed tomography (CT) images builds an important step for many clinical applications and for physiological studies. Previously proposed algorithms suffer from one or several problems: leaking into the surrounding lung parenchyma, the need for the user to manually adjust parameters, excessive runtime. Low-dose CT scans are increasingly utilized in lung screening studies, but segmenting them with traditional airway segmentation algorithms often yields less than satisfying results. In this paper, a new airway segmentation method based on fuzzy connectivity is presented. Small adaptive regions of interest are used that follow the airway branches as they are segmented. This has several advantages. It makes it possible to detect leaks early and avoid them, the segmentation algorithm can automatically adapt to changing image parameters, and the computing time is kept within moderate values. The new method is robust in the sense that it works on various types of scans (low-dose and regular dose, normal subjects and diseased subjects) without the need for the user to manually adjust any parameters. Comparison with a commonly used region-grow segmentation algorithm shows that the newly proposed method retrieves a significantly higher count of airway branches. A method that conducts accurate cross-sectional airway measurements on airways is presented as an additional processing step. Measurements are conducted in the original gray-level volume. Validation on a phantom shows that subvoxel accuracy is achieved for all airway sizes and airway orientations.


IEEE Transactions on Medical Imaging | 2003

Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images

Deniz Aykac; Eric A. Hoffman; Geoffrey McLennan; Joseph M. Reinhardt

The lungs exchange air with the external environment via the pulmonary airways. Computed tomography (CT) scanning can be used to obtain detailed images of the pulmonary anatomy, including the airways. These images have been used to measure airway geometry, study airway reactivity, and guide surgical interventions. Prior to these applications, airway segmentation can be used to identify the airway lumen in the CT images. Airway tree segmentation can be performed manually by an image analyst, but the complexity of the tree makes manual segmentation tedious and extremely time-consuming. We describe a fully automatic technique for segmenting the airway tree in three-dimensional (3-D) CT images of the thorax. We use grayscale morphological reconstruction to identify candidate airways on CT slices and then reconstruct a connected 3-D airway tree. After segmentation, we estimate airway branchpoints based on connectivity changes in the reconstructed tree. Compared to manual analysis on 3-mm-thick electron-beam CT images, the automatic approach has an overall airway branch detection sensitivity of approximately 73%.


IEEE Transactions on Medical Imaging | 2006

MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies

Ye Xu; Milan Sonka; Geoffrey McLennan; Junfeng Guo; Eric A. Hoffman

Our goal is to enhance the ability to differentiate normal lung from subtle pathologies via multidetector row CT (MDCT) by extending a two-dimensional (2-D) texturebased tissue classification [adaptive multiple feature method (AMFM)] to use three-dimensional (3-D) texture features. We performed MDCT on 34 humans and classified volumes of interest (VOIs) in the MDCT images into five categories: EC, emphysema in severe chronic obstructive pulmonary disease (COPD); MC, mild emphysema in mild COPD; NC, normal appearing lung in mild COPD; NN, normal appearing lung in normal nonsmokers; and NS, normal appearing lung in normal smokers. COPD severity was based upon pulmonary function tests (PFTs). Airways and vessels were excluded from VOIs; 24 3-D texture features were calculated; and a Bayesian classifier was used for discrimination. A leave-one-out method was employed for validation. Sensitivity of the four-class classification in the form of 3-D/2-D was: EC: 85%/71%, MC: 90%/82%; NC: 88%/50%; NN: 100%/60%. Sensitivity and specificity for NN using a two-class classification of NN and NS in the form of 3-D/2-D were: 99%/72% and 100%/75%, respectively. We conclude that 3-D AMFM analysis of lung parenchyma improves discrimination compared to 2-D AMFM of the same VOIs. Furthermore, our results suggest that the 3-D AMFM may provide a means of discriminating subtle differences between smokers and nonsmokers both with normal PFTs.


Respiratory Physiology & Neurobiology | 2007

Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways

Ching-Long Lin; Merryn H. Tawhai; Geoffrey McLennan; Eric A. Hoffman

A computational fluid dynamics technique is applied to understand the relative importance of the upper and intra-thoracic airways and their role in determining central airflow patterns with particular attention paid to the importance of turbulence. The geometry of the human upper respiratory tract is derived from volumetric scans of a volunteer imaged via multidetector-row computed tomography. Geometry 1 consists of a mouthpiece, the mouth, the oropharynx, the larynx, and the intra-thoracic airways of up to six generations. Geometry 2 comprises only the intra-thoracic airways. The results show that a curved sheet-like turbulent laryngeal jet is observed only in geometry 1 with turbulence intensity in the trachea varying from 10% to 20%, whereas the turbulence in geometry 2 is negligible. The presence of turbulence is found to increase the maximum localised wall shear stress by three-folds. The proper orthogonal decomposition analysis reveals that the regions of high turbulence intensity are associated with Taylor-Görtler-like vortices. We conclude that turbulence induced by the laryngeal jet could significantly affect airway flow patterns as well as tracheal wall shear stress. Thus, airflow modeling, particularly subject specific evaluations, should consider upper as well as intra-thoracic airway geometry.


Academic Radiology | 2003

Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function1 ☆

Eric A. Hoffman; Joseph M. Reinhardt; Milan Sonka; Brett A. Simon; Junfeng Guo; Osama Saba; Deokiee Chon; Shaher Samrah; Hidenori Shikata; Juerg Tschirren; Kálmán Palágyi; Kenneth C. Beck; Geoffrey McLennan

RATIONALE AND OBJECTIVES Efforts to establish a quantitative approach to the computed tomography (CT)-based character ization of the lung parenchyma in interstitial lung disease (including emphysema) has been sought. The accuracy of these tools must be site independent. Multi-detector row CT has remained the gold standard for imaging the lung, and it provides the ability to image both lung structure as well as lung function. MATERIAL AND METHODS Imaging is via multi-detector row CT and protocols include careful control of lung volume during scanning. Characterization includes not only anatomic-based measures but also functional measures including regional parameters derived from measures of pulmonary blood flow and ventilation. Image processing includes the automated detection of the lungs, lobes, and airways. The airways provide the road map to the lung parenchyma. Software automatically detects the airways, the airway centerlines, and the branch points, and then automatically labels the airway tree segments with a standardized set of labels, allowing for intersubject as well intrasubject comparisons across time. By warping all lungs to a common atlas, the atlas provides the range of normality for the various parameters provided by CT imaging. RESULTS Imaged density and textural changes mark underlying structural changes at the most peripheral regions of the lung. Additionally, texture-based alterations in the parameters of blood flow may provide early evidence of pathologic processes. Imaging of stable xenon gas provides a regional measure of ventilation which, when coupled with measures of flow, provide for a textural analysis regional of ventilation-perfusion matching. CONCLUSION With the improved resolution and speed of CT imaging, the patchy nature of regional parenchymal pathology can be imaged as texture of structure and function. With careful control of imaging protocols and the use of objective image analysis methods it is possible to provide site-independent tools for the assessment of interstitial lung disease. There remains a need to validate these methods, which requires interdisciplinary and cross-institutional efforts to gather appropriate data bases of images along with a consensus on appropriate ground truths associated with the images. Furthermore, there is the growing need for scanner manufacturers to focus on not just visually pleasing images, but on quantitatifiably accurate images.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

The porcine lung as a potential model for cystic fibrosis

Christopher S. Rogers; William M. Abraham; Kim A. Brogden; John F. Engelhardt; John T. Fisher; Paul B. McCray; Geoffrey McLennan; David K. Meyerholz; Eman Namati; Lynda S. Ostedgaard; Randall S. Prather; Juan R. Sabater; David A. Stoltz; Joseph Zabner; Michael J. Welsh

Airway disease currently causes most of the morbidity and mortality in patients with cystic fibrosis (CF). However, understanding the pathogenesis of CF lung disease and developing novel therapeutic strategies have been hampered by the limitations of current models. Although the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) has been targeted in mice, CF mice fail to develop lung or pancreatic disease like that in humans. In many respects, the anatomy, biochemistry, physiology, size, and genetics of pigs resemble those of humans. Thus pigs with a targeted CFTR gene might provide a good model for CF. Here, we review aspects of porcine airways and lung that are relevant to CF.


Optics Express | 2006

In vivo mouse studies with bioluminescence tomography.

Ge Wang; Wenxiang Cong; Kumar Durairaj; Xin Qian; Haiou Shen; Patrick L. Sinn; Eric A. Hoffman; Geoffrey McLennan; Michael D. Henry

Bioluminescence tomography (BLT) is a new molecular imaging mode, which is being actively developed to reveal molecular and cellular signatures as labeled by bioluminescent probes in a living small animal. This technology can help diagnose diseases, evaluate therapies, and facilitate drug development with mouse models. In this paper, we describe in vivo mouse experiments with BLT, and propose the reconstruction procedure of bioluminescent sources from optical data measured on the body surface of the mouse using a modality fusion approach. The results show the feasibility of our methodology for localization and quantification of the bioluminescent activities in vivo.


American Journal of Respiratory and Critical Care Medicine | 2010

Loss of Cystic Fibrosis Transmembrane Conductance Regulator Function Produces Abnormalities in Tracheal Development in Neonatal Pigs and Young Children

David K. Meyerholz; David A. Stoltz; Eman Namati; Alejandro A. Pezzulo; Amanda R. Smith; Michael V. Rector; Melissa J. Suter; S. C. S. Kao; Geoffrey McLennan; Guillermo J. Tearney; Joseph Zabner; Paul B. McCray; Michael J. Welsh

RATIONALE Although airway abnormalities are common in patients with cystic fibrosis (CF), it is unknown whether they are all secondary to postnatal infection and inflammation, which characterize the disease. OBJECTIVES To learn whether loss of the cystic fibrosis transmembrane conductance regulator (CFTR) might affect major airways early in life, before the onset of inflammation and infection. METHODS We studied newborn CFTR⁻(/)⁻ pig trachea, using computed tomography (CT) scans, pathology, and morphometry. We retrospectively analyzed trachea CT scans in young children with CF and also previously published data of infants with CF. MEASUREMENTS AND MAIN RESULTS We discovered three abnormalities in the porcine CF trachea. First, the trachea and mainstem bronchi had a uniformly small caliber and cross-sections of trachea were less circular than in controls. Second, trachealis smooth muscle had an altered bundle orientation and increased transcripts in a smooth muscle gene set. Third, submucosal gland units occurred with similar frequency in the mucosa of CF and control airways, but CF submucosal glands were hypoplastic and had global reductions in tissue-specific transcripts. To learn whether any of these changes occurred in young patients with CF, we examined CT scans from children 2 years of age and younger, and found that CF tracheas were less circular in cross-section, but lacked differences in lumen area. However, analysis of previously published morphometric data showed reduced tracheal lumen area in neonates with CF. CONCLUSIONS Our findings in newborn CF pigs and young patients with CF suggest that airway changes begin during fetal life and may contribute to CF pathogenesis and clinical disease during postnatal life.

Collaboration


Dive into the Geoffrey McLennan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William E. Higgins

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge