Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miloš A. Popović is active.

Publication


Featured researches published by Miloš A. Popović.


Nature | 2015

Single-chip microprocessor that communicates directly using light

Chen Sun; Mark T. Wade; Yunsup Lee; Jason S. Orcutt; Luca Alloatti; Michael Georgas; Andrew Waterman; Jeffrey M. Shainline; Rimas Avizienis; Sen Lin; Benjamin R. Moss; Rajesh Kumar; Fabio Pavanello; Amir H. Atabaki; Henry Cook; Albert J. Ou; Jonathan Leu; Yu-Hsin Chen; Krste Asanovic; Rajeev J. Ram; Miloš A. Popović; Vladimir Stojanovic

Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic–photonic systems enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic–photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic–photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic–photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.


high performance interconnects | 2008

Building Manycore Processor-to-DRAM Networks with Monolithic Silicon Photonics

Christopher Batten; Ajay Joshi; Jason S. Orcutt; Anatoly Khilo; Benjamin Moss; Charles W. Holzwarth; Miloš A. Popović; Hanqing Li; Henry I. Smith; Judy L. Hoyt; Franz X. Kärtner; Rajeev J. Ram; Vladimir Stojanovic; Krste Asanovic

We present a new monolithic silicon photonics technology suited for integration with standard bulk CMOS processes, which reduces costs and improves opto-electrical coupling compared to previous approaches. Our technology supports dense wavelength-division multiplexing with dozens of wavelengths per waveguide. Simulation and experimental results reveal an order of magnitude better energy-efficiency than electrical links in the same technology generation. Exploiting key features of our photonics technology, we have developed a processor-memory network architecture for future manycore systems based on an opto-electrical global crossbar. We illustrate the advantages of the proposed network architecture using analytical models and simulations with synthetic traffic patterns. For a power-constrained system with 256 cores connected to 16 DRAM modules using an opto-electrical crossbar, aggregate network throughput can be improved by ap8-10times compared to an optimized purely electrical network.


Optics Express | 2012

Photonic ADC: overcoming the bottleneck of electronic jitter

Anatol Khilo; Steven J. Spector; Matthew E. Grein; Amir H. Nejadmalayeri; Charles W. Holzwarth; Michelle Y. Sander; Marcus S. Dahlem; Michael Y. Peng; M. W. Geis; Nicole DiLello; Jung U. Yoon; Ali R. Motamedi; Jason S. Orcutt; Jade P. Wang; Cheryl Sorace-Agaskar; Miloš A. Popović; Jie Sun; Gui-Rong Zhou; Hyunil Byun; Jian Chen; Judy L. Hoyt; Henry I. Smith; Rajeev J. Ram; Michael H. Perrott; Theodore M. Lyszczarz; Erich P. Ippen; Franz X. Kärtner

Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs - a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20-channel silicon filter bank has been demonstrated.


optical fiber communication conference | 2004

Fabrication and analysis of add-drop filters based on microring resonators in SiN

Tymon Barwicz; Miloš A. Popović; Peter T. Rakich; Michael R. Watts; H. A. Haus; Erich P. Ippen; Henry I. Smith

Add-drop filters based on microring resonators were fabricated in silicon-rich silicon nitride. Third-order microring filters showed an 80 GHz bandwidth, a 4 dB loss from input to drop, and a 24 nm free spectral-range.


Optics Express | 2012

Open foundry platform for high-performance electronic-photonic integration

Jason S. Orcutt; Benjamin Moss; Chen Sun; Jonathan Leu; Michael Georgas; Jeffrey M. Shainline; Eugen Zgraggen; Hanqing Li; Jie Sun; Matthew Weaver; Stevan Urosevic; Miloš A. Popović; Rajeev J. Ram; Vladimir Stojanovic

This paper presents photonic devices with 3 dB/cm waveguide loss fabricated in an existing commercial electronic 45 nm SOI-CMOS foundry process. By utilizing existing front-end fabrication processes the photonic devices are monolithically integrated with electronics in the same physical device layer as transistors achieving 4 ps logic stage delay, without degradation in transistor performance. We demonstrate an 8-channel optical microring-resonator filter bank and optical modulators, both controlled by integrated digital circuits. By developing a device design methodology that requires zero process infrastructure changes, a widely available platform for high-performance photonic-electronic integrated circuits is enabled.


international symposium on microarchitecture | 2009

Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics

Christopher Batten; Ajay Joshi; Jason S. Orcutt; Anatol Khilo; Benjamin Moss; Charles W. Holzwarth; Miloš A. Popović; Hanqing Li; Henry I. Smith; Judy L. Hoyt; Franz X. Kärtner; Rajeev J. Ram; Vladimir Stojanovic; Krste Asanovic

Silicon photonics is a promising technology for addressing memory bandwidth limitations in future many-core processors. This article first introduces a new monolithic silicon-photonic technology, which uses a standard bulk CMOS process to reduce costs and improve energy efficiency, and then explores the logical and physical implications of leveraging this technology in processor-to-memory networks.


Optics Letters | 2006

Multistage high-order microring-resonator add-drop filters

Miloš A. Popović; Tymon Barwicz; Michael R. Watts; Peter T. Rakich; Luciano Socci; Erich P. Ippen; Franz X. Kärtner; Henry I. Smith

We propose and demonstrate a multistage design for microphotonic add-drop filters that provides reduced drop-port loss and relaxed tolerances for achieving high in-band extinction. As a result, the first microring-resonator filters with a rectangular notch stopband in the through port (to our knowledge) are shown, with extinctions exceeding 50 dB. Reaching 30 dB beyond previous results, without postfabrication trimming, such extinction levels open the door to microphotonic notch circuits for spectroscopy, wavelength conversion, and quantum cryptography applications. Combined with a low-loss, high-index-contrast electromagnetic design in SiN and frequency-matched microring resonators, this approach led to the first demonstration of flattop microphotonic filters meeting the stringent criteria for high-spectral-efficiency integrated add-drop multiplexers. The 40 GHz wide filters show a 20 nm free spectral range, 2 dB drop loss, and suppression of adjacent channels by over 30 dB.


Journal of Lightwave Technology | 2006

Fabrication of add-drop filters based on frequency-matched microring resonators

Tymon Barwicz; Miloš A. Popović; Michael R. Watts; Peter T. Rakich; Erich P. Ippen; Henry I. Smith

Frequency mismatches between resonators significantly impact the spectral responses of coupled resonator filters, such as high-order microring filters. In this paper, techniques allowing fabrication of frequency-matched high-index-contrast resonators are proposed, demonstrated, and analyzed. The main approach consists of inducing small dimensional changes in the resonators through alteration of the electron-beam dose used to expose either the actual resonator on a wafer or its image on a lithographic mask to be later used in filter fabrication. Third-order microring filters fabricated in silicon-rich silicon nitride, with optical resonator frequencies matched to better than 1 GHz, are reported. To achieve this, the average ring-waveguide widths of the microrings are matched to within less than 26 pm of a desired relative width offset. Furthermore, optimization and calibration procedures allowing strict dimensional control and smooth sidewalls are presented. A 5-nm dimensional control is demonstrated, and the standard deviation of sidewall roughness is reduced to below 1.6 nm.


Optics Express | 2006

Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters.

Miloš A. Popović; Christina Manolatou; Michael R. Watts

Coupling-induced resonance frequency shifts (CIFS) are theoretically described, and are found to be an important fundamental source of resonance frequency mismatch between coupled optical cavities that would be degenerate in isolation. Their deleterious effect on high-order resonant filter responses and complete correction by pre-distortion are described. Analysis of the physical effects contributing to CIFS shows that a positive index perturbation may bring about a resonance shift of either sign. Higherorder CIFS effects, the scaling of CIFS-caused impairment with finesse, FSR and index contrast, and the tolerability of frequency mismatch in telecom-grade filters are addressed. The results also suggest possible designs and applications for CIFS-free coupled-resonator systems.


Optics Express | 2011

Nanophotonic integration in state-of-the-art CMOS foundries

Jason S. Orcutt; Anatol Khilo; Charles W. Holzwarth; Miloš A. Popović; Hanqing Li; Jie Sun; Thomas D. Bonifield; Randy Hollingsworth; Franz X. Kärtner; Henry I. Smith; Vladimir Stojanovic; Rajeev J. Ram

We demonstrate a monolithic photonic integration platform that leverages the existing state-of-the-art CMOS foundry infrastructure. In our approach, proven XeF2 post-processing technology and compliance with electronic foundry process flows eliminate the need for specialized substrates or wafer bonding. This approach enables intimate integration of large numbers of nanophotonic devices alongside high-density, high-performance transistors at low initial and incremental cost. We demonstrate this platform by presenting grating-coupled, microring-resonator filter banks fabricated in an unmodified 28 nm bulk-CMOS process by sharing a mask set with standard electronic projects. The lithographic fidelity of this process enables the high-throughput fabrication of second-order, wavelength-division-multiplexing (WDM) filter banks that achieve low insertion loss without post-fabrication trimming.

Collaboration


Dive into the Miloš A. Popović's collaboration.

Top Co-Authors

Avatar

Mark T. Wade

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Rajeev J. Ram

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Vladimir Stojanovic

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jason S. Orcutt

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Erich P. Ippen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Henry I. Smith

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey M. Shainline

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Franz X. Kärtner

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge