Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milton L. Greenberg is active.

Publication


Featured researches published by Milton L. Greenberg.


Nature Communications | 2015

Imaging regulatory T cell dynamics and CTLA4-mediated suppression of T cell priming

Melanie P. Matheu; Shivashankar Othy; Milton L. Greenberg; Tobias X. Dong; Martijn J. Schuijs; Kim Deswarte; Hamida Hammad; Bart N. Lambrecht; Ian Parker; Michael D. Cahalan

Foxp3(+) regulatory T cells (Tregs) maintain immune homoeostasis through mechanisms that remain incompletely defined. Here by two-photon (2P) imaging, we examine the cellular dynamics of endogenous Tregs. Tregs are identified as two non-overlapping populations in the T-zone and follicular regions of the lymph node (LN). In the T-zone, Tregs migrate more rapidly than conventional T cells (Tconv), extend longer processes and interact with resident dendritic cells (DC) and Tconv. Tregs intercept immigrant DCs and interact with antigen-induced DC:Tconv clusters, while continuing to form contacts with activated Tconv. During antigen-specific responses, blocking CTLA4-B7 interactions reduces Treg-Tconv interaction times, increases the volume of DC:Tconv clusters and enhances subsequent Tconv proliferation in vivo. Our results demonstrate a role for altered cellular choreography of Tregs through CTLA4-based interactions to limit T-cell priming.Foxp3+ regulatory T cells (Tregs) maintain immune homeostasis through mechanisms that remain incompletely defined. Here, by two-photon imaging, we examine the cellular dynamics of endogenous Tregs. Tregs are identified as two non-overlapping populations in the T-zone and follicular regions of the lymph node. In the T-zone, Tregs migrate more rapidly than conventional T cells (Tconv), extend longer processes, and interact with resident dendritic cells (DC) and Tconv. Tregs intercept immigrant DCs and interact with antigen-induced DC:Tconv clusters, while continuing to form contacts with activated Tconv. During antigen-specific responses, blocking CTLA4-B7 interactions reduces Treg-Tconv interaction times, increases the volume of DC:Tconv clusters, and enhances subsequent Tconv proliferation in vivo. Our results demonstrate a role for altered cellular choreography of Tregs through CTLA4-based interactions to limit T cell priming.


PLOS ONE | 2013

Three Phases of CD8 T Cell Response in the Lung Following H1N1 Influenza Infection and Sphingosine 1 Phosphate Agonist Therapy

Melanie P. Matheu; John R. Teijaro; Kevin B. Walsh; Milton L. Greenberg; David Marsolais; Ian Parker; Hugh Rosen; Michael B. A. Oldstone; Michael D. Cahalan

Influenza-induced lung edema and inflammation are exacerbated by a positive feedback loop of cytokine and chemokine production termed a ‘cytokine storm’, a hallmark of increased influenza-related morbidity and mortality. Upon infection, an immune response is rapidly initiated in the lungs and draining lymph node, leading to expansion of virus-specific effector cells. Using two-photon microscopy, we imaged the dynamics of dendritic cells (DC) and virus-specific eGFP+CD8+ T cells in the lungs and draining mediastinal lymph nodes during the first two weeks following influenza infection. Three distinct phases of T cell and CD11c+ DC behavior were revealed: 1) Priming, facilitated by the arrival of lung DCs in the lymph node and characterized by antigen recognition and expansion of antigen-specific CD8+ T cells; asymmetric T cell division in contact with DCs was frequently observed. 2) Clearance, during which DCs re-populate the lung and T cells leave the draining lymph node and re-enter the lung tissue where enlarged, motile T cells come into contact with DCs and form long-lived interactions. 3) Maintenance, characterized by T-cell scanning of the lung tissue and dissociation from local antigen presenting cells; the T cells spend less time in association with DCs and migrate rapidly on collagen. A single dose of a sphingosine-1-phosphate receptor agonist, AAL-R, sufficient to suppress influenza-induced cytokine-storm, altered T cell and DC behavior during influenza clearance, delaying T cell division, cellular infiltration in the lung, and suppressing T-DC interactions in the lung. Our results provide a detailed description of T cell and DC choreography and dynamics in the lymph node and the lung during influenza infection. In addition, we suggest that phase lags in T cell and DC dynamics induced by targeting S1P receptors in vivo may attenuate the intensity of the immune response and can be manipulated for therapeutic benefit.


Autoimmunity | 2015

B cell TLR1/2, TLR4, TLR7 and TLR9 interact in induction of class switch DNA recombination: Modulation by BCR and CD40, and relevance to T-independent antibody responses

Egest J. Pone; Zheng Lou; Tonika Lam; Milton L. Greenberg; Rui Wang; Zhenming Xu; Paolo Casali

Abstract Ig class switch DNA recombination (CSR) in B cells is crucial to the maturation of antibody responses. It requires IgH germline IH-CH transcription and expression of AID, both of which are induced by engagement of CD40 or dual engagement of a Toll-like receptor (TLR) and B cell receptor (BCR). Here, we have addressed cross-regulation between two different TLRs or between a TLR and CD40 in CSR induction by using a B cell stimulation system involving lipopolysaccharides (LPS). LPS-mediated long-term primary class-switched antibody responses and memory-like antibody responses in vivo and induced generation of class-switched B cells and plasma cells in vitro. Consistent with the requirement for dual TLR and BCR engagement in CSR induction, LPS, which engages TLR4 through its lipid A moiety, triggered cytosolic Ca2+ flux in B cells through its BCR-engaging polysaccharidic moiety. In the presence of BCR crosslinking, LPS synergized with a TLR1/2 ligand (Pam3CSK4) in CSR induction, but much less efficiently with a TLR7 (R-848) or TLR9 (CpG) ligand. In the absence of BCR crosslinking, R-848 and CpG, which per se induced marginal CSR, virtually abrogated CSR to IgG1, IgG2a, IgG2b, IgG3 and/or IgA, as induced by LPS or CD154 (CD40 ligand) plus IL-4, IFN-γ or TGF-β, and reduced secretion of class-switched Igs, without affecting B cell proliferation or IgM expression. The CSR inhibition by TLR9 was associated with the reduction in AID expression and/or IgH germline IH-S-CH transcription, and required co-stimulation of B cells by CpG with LPS or CD154. Unexpectedly, B cells also failed to undergo CSR or plasma cell differentiation when co-stimulated by LPS and CD154. Overall, by addressing the interaction of TLR1/2, TLR4, TLR7 and TLR9 in the induction of CSR and modulation of TLR-dependent CSR by BCR and CD40, our study suggests the complexity of how different stimuli cross-regulate an important B cell differentiation process and an important role of TLRs in inducing effective T-independent antibody responses to microbial pathogens, allergens and vaccines.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis

Milton L. Greenberg; Jason G. Weinger; Melanie P. Matheu; Kevin S. Carbajal; Ian Parker; Wendy B. Macklin; Thomas E. Lane; Michael D. Cahalan

Significance Stem cell transplantation has emerged as a promising cell-based therapy for the treatment of demyelinating diseases such as multiple sclerosis (MS). This study provides the first real-time imaging of transplanted stem cell-mediated remyelination in a mouse model of MS. Whereas current treatments solely delay disease progression, transplanted stem cells actively reverse clinical disease in animal models. Using two-photon microscopy and viral-induced demyelination, we describe a technique to visualize cellular migration and remyelination in the mouse spinal cord. Transplanted neural precursor cells physically wrap damaged axons with newly formed myelin, preserving axonal health. Neural precursor cells (NPCs) offer a promising approach for treating demyelinating diseases. However, the cellular dynamics that underlie transplanted NPC-mediated remyelination have not been described. Using two-photon imaging of a newly developed ventral spinal cord preparation and a viral model of demyelination, we describe the motility and intercellular interactions of transplanted mouse NPCs expressing green fluorescent protein (GFP) with damaged axons expressing yellow fluorescent protein (YFP). Our findings reveal focal axonal degeneration that occurs in the ventral side of the spinal cord within 1 wk following intracranial instillation with the neurotropic JHM strain of mouse hepatitis virus (JHMV). Axonal damage precedes extensive demyelination and is characterized by swelling along the length of the axon, loss of YFP signal, and transected appearance. NPCs engrafted into spinal cords of JHMV-infected mice exhibited diminished migration velocities and increased proliferation compared with transplanted cells in noninfected mice. NPCs preferentially accumulated within areas of axonal damage, initiated direct contact with axons, and subsequently expressed the myelin proteolipid protein gene, initiating remyelination. These findings indicate that NPCs transplanted into an inflammatory demyelinating microenvironment participate directly in therapeutic outcome through the wrapping of myelin around damaged neurons.


Journal of Immunology | 2013

Orai1 function is essential for T cell homing to lymph nodes.

Milton L. Greenberg; Ying Yu; Sabrina Leverrier; Shenyuan L. Zhang; Ian Parker; Michael D. Cahalan

In T lymphocytes, Ca2+ release–activated Ca2+ (CRAC) channels composed of Orai1 subunits trigger Ag-induced gene expression and cell proliferation through the NFAT pathway. We evaluated the requirement of CRAC channel function for lymphocyte homing using expression of a dominant-negative Orai1-E106A mutant to suppress Ca2+ signaling. To investigate homing and motility of human lymphocytes in immunocompromised mouse hosts, we transferred human lymphocytes either acutely or after stable engraftment after a second transfer from the same blood donor. Human and mouse lymphocyte homing was assessed, and cells were tracked within lymph nodes (LNs) by two-photon microscopy. Our results demonstrate that human T and B lymphocytes home into and migrate within the LNs of immunocompromised NOD.SCID mice similar to murine lymphocytes. Human T and B cells colocalized in atrophied or reconstituted mouse LNs, where T cells migrated in a random walk at velocities of 9–13 μm/min and B cells at 6 μm/min. Expression of Orai1-E106A inhibited CRAC channel function in human and mouse T cells, and prevented homing from high endothelial venules into murine LNs. Ca2+ signals induced by CCL21 were also inhibited in T cells expressing Orai1-E106A. With CRAC channels inhibited, the high-affinity form of LFA-1 failed to become active, and T cells failed to migrate across endothelial cells in a transwell model. These results establish a requirement for CRAC channel–mediated Ca2+ influx for T cell homing to LNs mediated by high-affinity integrin activation and chemokine-induced transendothelial migration.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Toll-like receptor 4-activated B cells out-compete Toll-like receptor 9-activated B cells to establish peripheral immunological tolerance

Melanie P. Matheu; Yan Su; Milton L. Greenberg; Caroline A. Blanc; Ian Parker; David W. Scott; Michael D. Cahalan

B-cell–induced peripheral T-cell tolerance is characterized by suppression of T-cell proliferation and T-cell–dependent antibody production. However, the cellular interactions that underlie tolerance induction have not been identified. Using two-photon microscopy of lymph nodes we show that tolerogenic LPS-activated membrane-bound ovalbumin (mOVA) B cells (LPS B cells) establish long-lived, highly motile conjugate pairs with responding antigen-specific OTII T cells but not with antigen-irrelevant T cells. Treatment with anti–CTLA-4 disrupts persistent B-cell–T-cell (B–T) contacts and suppresses antigen-specific tolerance. Nontolerogenic CpG-activated mOVA B cells (CpG B cells) also form prolonged, motile conjugates with responding OTII T cells when transferred separately. However, when both tolerogenic and nontolerogenic B-cell populations are present, LPS B cells suppress long-lived CpG B–OTII T-cell interactions and exhibit tolerogenic dominance. Contact of LPS B cells with previously established B–T pairs resulted in partner-swapping events in which LPS B cells preferentially migrate toward and disrupt nontolerogenic CpG mOVA B-cell–OTII T-cell pairs. Our results demonstrate that establishment of peripheral T-cell tolerance involves physical engagement of B cells with the responding T-cell population, acting in a directed and competitive manner to alter the functional outcome of B–T interactions.


eLife | 2017

Intermittent Ca2+ signals mediated by Orai1 regulate basal T cell motility

Tobias X. Dong; Shivashankar Othy; Milton L. Greenberg; Amit Jairaman; Chijioke Akunwafo; Sabrina Leverrier; Ying Yu; Ian Parker; Joseph L. Dynes; Michael D. Cahalan

Ca2+ influx through Orai1 channels is crucial for several T cell functions, but a role in regulating basal cellular motility has not been described. Here, we show that inhibition of Orai1 channel activity increases average cell velocities by reducing the frequency of pauses in human T cells migrating through confined spaces, even in the absence of extrinsic cell contacts or antigen recognition. Utilizing a novel ratiometric genetically encoded cytosolic Ca2+ indicator, Salsa6f, which permits real-time monitoring of cytosolic Ca2+ along with cell motility, we show that spontaneous pauses during T cell motility in vitro and in vivo coincide with episodes of cytosolic Ca2+ signaling. Furthermore, lymph node T cells exhibited two types of spontaneous Ca2+ transients: short-duration ‘sparkles’ and longer duration global signals. Our results demonstrate that spontaneous and self-peptide MHC-dependent activation of Orai1 ensures random walk behavior in T cells to optimize immune surveillance.


Journal of Visualized Experiments | 2015

Two-photon Imaging of Cellular Dynamics in the Mouse Spinal Cord

Jason G. Weinger; Milton L. Greenberg; Melanie P. Matheu; Ian Parker; Craig M. Walsh; Thomas E. Lane; Michael D. Cahalan

Two-photon (2P) microscopy is utilized to reveal cellular dynamics and interactions deep within living, intact tissues. Here, we present a method for live-cell imaging in the murine spinal cord. This technique is uniquely suited to analyze neural precursor cell (NPC) dynamics following transplantation into spinal cords undergoing neuroinflammatory demyelinating disorders. NPCs migrate to sites of axonal damage, proliferate, differentiate into oligodendrocytes, and participate in direct remyelination. NPCs are thereby a promising therapeutic treatment to ameliorate chronic demyelinating diseases. Because transplanted NPCs migrate to the damaged areas on the ventral side of the spinal cord, traditional intravital 2P imaging is impossible, and only information on static interactions was previously available using histochemical staining approaches. Although this method was generated to image transplanted NPCs in the ventral spinal cord, it can be applied to numerous studies of transplanted and endogenous cells throughout the entire spinal cord. In this article, we demonstrate the preparation and imaging of a spinal cord with enhanced yellow fluorescent protein-expressing axons and enhanced green fluorescent protein-expressing transplanted NPCs.


bioRxiv | 2017

Cell-intrinsic activation of Orai1 regulates human T cell motility

Tobias X. Dong; Milton L. Greenberg; Sabrina Leverrier; Ying Yu; Ian Parker; Joseph L. Dynes; Michael D. Cahalan

Ca2+ signaling through the store-operated Ca2+ channel, Orai1, is crucial for T cell function, but a role in regulating T cell motility in lymph nodes has not been previously reported. Tracking human T cells in immunodeficient mouse lymph nodes and in microfabricated PDMS channels, we show that inhibition of Orai1 channel activity with a dominant-negative Orai1-E106A construct increases average T cell velocities by reducing the frequency of pauses in motile T cells. Orai1-dependent motility arrest occurs spontaneously during confined motility in vitro, even in the absence of extrinsic cell contacts or antigen recognition. Utilizing a novel ratiometric genetically encoded cytosolic Ca2+ indicator, Salsa6f, we show these spontaneous pauses during T cell motility in vitro coincide with episodes of spontaneous cytosolic Ca2+ signaling. Our results demonstrate that Orai1, activated in a cell-intrinsic manner, regulates T cell motility patterns that accompany immune surveillance.


BMC Research Notes | 2017

T-Time: A data repository of T cell and calcium release-activated calcium channel activation imagery

Cody Arbuckle; Milton L. Greenberg; Adrienne Bergh; Rene German; Nick Sirago; Erik Linstead

BackgroundA fundamental understanding of live-cell dynamics is necessary in order to advance scientific techniques and personalized medicine. For this understanding to be possible, image processing techniques, probes, tracking algorithms and many other methodologies must be improved. Currently there are no large open-source datasets containing live-cell imaging to act as a standard for the community. As a result, researchers cannot evaluate their methodologies on an independent benchmark or leverage such a dataset to formulate scientific questions.FindingsHere we present T-Time, the largest free and publicly available data set of T cell phase contrast imagery designed with the intention of furthering live-cell dynamics research. T-Time consists of over 40 GB of imagery data, and includes annotations derived from these images using a custom T cell identification and tracking algorithm. The data set contains 71 time-lapse sequences containing T cell movement and calcium release activated calcium channel activation, along with 50 time-lapse sequences of T cell activation and T reg interactions. The database includes a user-friendly web interface, summary information on the time-lapse images, and a mechanism for users to download tailored image datasets for their own research. T-Time is freely available on the web at http://ttime.mlatlab.org.ConclusionsT-Time is a novel data set of T cell images and associated metadata. It allows users to study T cell interaction and activation.

Collaboration


Dive into the Milton L. Greenberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Parker

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias X. Dong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Yu

University of California

View shared research outputs
Top Co-Authors

Avatar

David W. Scott

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Egest J. Pone

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge