Milton Thomas
South Dakota State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Milton Thomas.
Journal of Virology | 2015
Chithra Sreenivasan; Milton Thomas; Zizhang Sheng; Ben M. Hause; Emily A. Collin; David Knudsen; Angela E. Pillatzki; Eric A. Nelson; Dan Wang; Radhey S. Kaushik; Feng Li
ABSTRACT Influenza D virus (FLUDV) is a novel influenza virus that infects cattle and swine. The goal of this study was to investigate the replication and transmission of bovine FLUDV in guinea pigs. Following direct intranasal inoculation of animals, the virus was detected in nasal washes of infected animals during the first 7 days postinfection. High viral titers were obtained from nasal turbinates and lung tissues of directly inoculated animals. Further, bovine FLUDV was able to transmit from the infected guinea pigs to sentinel animals by means of contact and not by aerosol dissemination under the experimental conditions tested in this study. Despite exhibiting no clinical signs, infected guinea pigs developed seroconversion and the viral antigen was detected in lungs of animals by immunohistochemistry. The observation that bovine FLUDV replicated in the respiratory tract of guinea pigs was similar to observations described previously in studies of gnotobiotic calves and pigs experimentally infected with bovine FLUDV but different from those described previously in experimental infections in ferrets and swine with a swine FLUDV, which supported virus replication only in the upper respiratory tract and not in the lower respiratory tract, including lung. Our study established that guinea pigs could be used as an animal model for studying this newly emerging influenza virus. IMPORTANCE Influenza D virus (FLUDV) is a novel emerging pathogen with bovine as its primary host. The epidemiology and pathogenicity of the virus are not yet known. FLUDV also spreads to swine, and the presence of FLUDV-specific antibodies in humans could indicate that there is a potential for zoonosis. Our results showed that bovine FLUDV replicated in the nasal turbinate and lungs of guinea pigs at high titers and was also able to transmit from an infected animal to sentinel animals by contact. The fact that bovine FLUDV replicated productively in both the upper and lower respiratory tracts of guinea pigs, similarly to virus infection in its native host, demonstrates that guinea pigs would be a suitable model host to study the replication and transmission potential of bovine FLUDV.
Vaccine | 2015
Milton Thomas; Zhao Wang; Chithra Sreenivasan; Ben M. Hause; Gourapura J. Renukaradhya; Feng Li; David H. Francis; Radhey S. Kaushik; Mahesh Khatri
Abstract Swine influenza is widely prevalent in swine herds in North America and Europe causing enormous economic losses and a public health threat. Pigs can be infected by both avian and mammalian influenza viruses and are sources of generation of reassortant influenza viruses capable of causing pandemics in humans. Current commercial vaccines provide satisfactory immunity against homologous viruses; however, protection against heterologous viruses is not adequate. In this study, we evaluated the protective efficacy of an intranasal Poly I:C adjuvanted UV inactivated bivalent swine influenza vaccine consisting of Swine/OH/24366/07 H1N1 and Swine/CO/99 H3N2, referred as PAV, in maternal antibody positive pigs against an antigenic variant and a heterologous swine influenza virus challenge. Groups of three-week-old commercial-grade pigs were immunized intranasally with PAV or a commercial vaccine (CV) twice at 2 weeks intervals. Three weeks after the second immunization, pigs were challenged with the antigenic variant Swine/MN/08 H1N1 (MN08) and the heterologous Swine/NC/10 H1N2 (NC10) influenza virus. Antibodies in serum and respiratory tract, lung lesions, virus shedding in nasal secretions and virus load in lungs were assessed. Intranasal administration of PAV induced challenge viruses specific-hemagglutination inhibition- and IgG antibodies in the serum and IgA and IgG antibodies in the respiratory tract. Importantly, intranasal administration of PAV provided protection against the antigenic variant MN08 and the heterologous NC10 swine influenza viruses as evidenced by significant reductions in lung virus load, gross lung lesions and significantly reduced shedding of challenge viruses in nasal secretions. These results indicate that Poly I:C or its homologues may be effective as vaccine adjuvants capable of generating cross-protective immunity against antigenic variants/heterologous swine influenza viruses in pigs.
Gut Pathogens | 2017
Milton Thomas; Gavin John Fenske; Linto Antony; Sudeep Ghimire; Ronald D. Welsh; Joy Scaria
The aim of this study was to generate a reference set of Salmonella enterica genomes isolated from wildlife from the United States and to determine the antimicrobial resistance and virulence gene profile of the isolates from the genome sequence data. We sequenced the whole genomes of 103 Salmonella isolates sampled between 1988 and 2003 from wildlife and exotic pet cases that were submitted to the Oklahoma Animal Disease Diagnostic Laboratory, Stillwater, Oklahoma. Among 103 isolates, 50.48% were from wild birds, 0.9% was from fish, 24.27% each were from reptiles and mammals. 50.48% isolates showed resistance to at least one antibiotic. Resistance against the aminoglycoside streptomycin was most common while 9 isolates were found to be multi-drug resistant having resistance against more than three antibiotics. Determination of virulence gene profile revealed that the genes belonging to csg operons, the fim genes that encode for type 1 fimbriae and the genes belonging to type III secretion system were predominant among the isolates. The universal presence of fimbrial genes and the genes encoded by pathogenicity islands 1–2 among the isolates we report here indicates that these isolates could potentially cause disease in humans. Therefore, the genomes we report here could be a valuable reference point for future traceback investigations when wildlife is considered to be the potential source of human Salmonellosis.
Genome Announcements | 2016
Regg Neiger; Milton Thomas; Seema Das; Michael E. Barnes; Brian Fletcher; Kevin Snekvik; Jim Thompson; Joy Scaria
ABSTRACT We report here the genome sequences of three Flavobacterium psychrophilum strains causing a bacterial coldwater disease (BCWD) outbreak, isolated from infected rainbow trout from hatcheries in Montana and South Dakota. The availability of these virulent outbreak-causing strain genome sequences will help further understand the pathogenesis of BCWD.
BioMed Research International | 2017
Ruth Guillermo-Lagae; Sreevidya Santha; Milton Thomas; Emily Zoelle; Jonathan Stevens; Radhey S. Kaushik; Chandradhar Dwivedi
Honokiol, a plant lignan has been shown to have antineoplastic effects against nonmelanoma skin cancer developments in mice. In this study, antineoplastic effects of honokiol were investigated in malignant melanoma models. In vitro effects of honokiol treatment on SKMEL-2 and UACC-62 melanoma cells were evaluated by measuring the cell viability, proliferation, apoptosis, cell cycle analysis, and expressions of various proteins associated with cell cycle progression and apoptosis. For the in vivo study, male nude mice inoculated with SKMEL-2 or UACC-62 cells received injections of sesame oil or honokiol for two to seven weeks. In vitro honokiol treatment caused significant decrease in cell viability, proliferation, cell cycle arrest, increased apoptosis, and modulation of apoptotic and cell cycle regulatory proteins. Honokiol caused an accumulation of cells in the G2/M phase of the cell cycle in SKMEL-2 and G0/G1 phase in UACC-62 cells. An elevated level of caspases and PARP were observed in both cell lines treated with honokiol. A decrease in the expression of various cell cycle regulatory proteins was also observed in honokiol treated cells. Honokiol caused a significant reduction of tumor growth in SKMEL-2 and UACC-62 melanoma xenografts. These findings suggest that honokiol is a good candidate for further studies as a possible treatment for malignant melanoma.
Viruses | 2018
Chithra Sreenivasan; Sunayana Jandhyala; Sisi Luo; Ben M. Hause; Milton Thomas; David Knudsen; Pamela Leslie-Steen; Travis Clement; Stephanie E. Reedy; Thomas M. Chambers; Jane Christopher-Hennings; Eric A. Nelson; Dan Wang; Radhey S. Kaushik; Feng Li
Equine influenza, caused by the H3N8 subtype, is a highly contagious respiratory disease affecting equid populations worldwide and has led to serious epidemics and transboundary pandemics. This study describes the phylogenetic characterization and replication kinetics of recently-isolated H3N8 virus from a nasal swab obtained from a sporadic case of natural infection in an unvaccinated horse from Montana, USA. The nasal swab tested positive for equine influenza by Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR). Further, the whole genome sequencing of the virus confirmed that it was the H3N8 subtype and was designated as A/equine/Montana/9564-1/2015 (H3N8). A BLASTn search revealed that the polymerase basic protein 1 (PB1), polymerase acidic (PA), hemagglutinin (HA), nucleoprotein (NP), and matrix (M) segments of this H3N8 isolate shared the highest percentage identity to A/equine/Tennessee/29A/2014 (H3N8) and the polymerase basic protein 2 (PB2), neuraminidase (NA), and non-structural protein (NS) segments to A/equine/Malaysia/M201/2015 (H3N8). Phylogenetic characterization of individual gene segments, using currently available H3N8 viral genomes, of both equine and canine origin, further established that A/equine/Montana/9564-1/2015 belonged to the Florida Clade 1 viruses. Interestingly, replication kinetics of this H3N8 virus, using airway derived primary cells from multiple species, such as equine, swine, bovine, and human lung epithelial cells, demonstrated appreciable titers, when compared to Madin–Darby canine kidney epithelial cells. These findings indicate the broad host spectrum of this virus isolate and suggest the potential for cross-species transmissibility.
Genome Announcements | 2016
R. G. Amachawadi; Milton Thomas; T. G. Nagaraja; Joy Scaria
ABSTRACT The genome sequencing of 13 Salmonella enterica subsp. enterica serovar Lubbock strains isolated from liver abscesses of feedlot cattle is reported here. The availability of these genomes will help to further understand the etiologic role of Salmonella strains in liver abscesses of cattle and will serve as references in microbial trace-back studies to improve food safety.
Genome Announcements | 2016
Nicodemus Useh; Emmanuel O. Ngbede; Nguavese Akange; Milton Thomas; Andrew Foley; Mitchel Chan Keena; Eric A. Nelson; Jane Christopher-Hennings; Masaru Tomita; Haruo Suzuki; Joy Scaria
ABSTRACT Here, we report the availability of draft genomes of several Salmonella serotypes, isolated from poultry sources from Nigeria. These genomes will help to further understand the biological diversity of S. enterica and will serve as references in microbial trace-back studies to improve food safety.
bioRxiv | 2018
Milton Thomas; Supapit Wongkuna; Sudeep Ghimire; Kinchel Doerner; Aaron Singery; Eric A. Nelson; T. A. Woyengo; Surang Chankhamhaengdecha; Tavan Janvilisri; Joy Scaria
A gnotobiotic chicken model was developed to study the succession of intestinal microflora from hatching to 18 days of age. Intestinal samples were collected from a local population of feral chickens and administered orally to germ-free 3 day old chicks. Animals were enthanized on 0, 9 and 18 days of age and intestinal samples were collected and subjected to genomic analysis. The five most prevalent phyla were Bacteroidetes (45.73±3.35%), Firmicutes (36.47±2.60%), Proteobacteria (8.28±0.91%), Actinobacteria (5.09±0.52%), and Spriochetes (2.10±0.38%). Principle coordinate analysis indicated the 0, 9 day and 18 day variables clustered together and the microbial communities changed temporally. The Morista-Horn index values ranged from 0.72 to 1, indicating the communities at 0, 9 or 18 days were more similar than dissimilar. The predicted functional profiles of the microbiomes of 0, 9 and 18 days were also similar. These results indicate the gnotobiotic chicks stably maintain the phylogentic diversity and predicted metabolic functionality of the inoculum community. Importance The domestic chicken is the cornerstone of animal agriculture worldwide with a flock population exceeding 40 billion birds/year. It serves as the economically valuable source of protein globally. Microbiome of poultry has important effects on chicken growth, feed conversion, immune status and pathogen resistance. The significance of our research is in developing a gnotobiotic chicken model to study chicken gut microbiota function. Our experimental model shows that young germfree chicks are able to colonize diverse set of gut bacteria. Therefore, besides using this model to study mechanisms of gut microbiota interactions in the chicken gut, our model could be also used for applied aspects such as determining the safety and efficacy of new probiotic strains derived from chicken gut microbiota.
Viruses | 2018
Milton Thomas; Max Pierson; Tirth Uprety; Laihua Zhu; Zhiguang Ran; Chithra Sreenivasan; Dan Wang; Ben M. Hause; David M. Francis; Feng Li; Radhey S. Kaushik
Influenza viruses infect the epithelial cells of the swine respiratory tract. Cell lines derived from the respiratory tract of pigs could serve as an excellent in vitro model for studying the pathogenesis of influenza viruses. In this study, we examined the replication of influenza viruses in the MK1-OSU cell line, which was clonally derived from pig airway epithelium. MK1-OSU cells expressed both cytokeratin and vimentin proteins and displayed several sugar moieties on the cell membrane. These cells also expressed both Sial2-3Gal and Sial2-6Gal receptors and were susceptible to swine influenza A, but not to human B and C viruses. Interestingly, these cells were also permissive to infection by influenza D virus that utilized 9-O-acetylated glycans. To study the differences in the expression of pattern recognition receptors (PRRs) upon influenza virus infection in the respiratory and digestive tract, we compared the protein expression of various PRRs in MK1-OSU cells with that in the SD-PJEC cell line, a clonally derived cell line from the porcine jejunal epithelium. Toll-like receptor 7 (TLR-7) and melanoma differentiation-associated protein 5 (MDA5) receptors showed decreased expression in influenza A infected MK1-OSU cells, while only TLR-7 expression decreased in SD-PJEC cells. Further research is warranted to study the mechanism behind the virus-mediated suppression of these proteins. Overall, this study shows that the porcine respiratory epithelial cell line, MK1-OSU, could serve as an in-vitro model for studying the pathogenesis and innate immune responses to porcine influenza viruses.