Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milya Davlieva is active.

Publication


Featured researches published by Milya Davlieva.


Antimicrobial Agents and Chemotherapy | 2013

Biochemical Characterization of Cardiolipin Synthase Mutations Associated with Daptomycin Resistance in Enterococci

Milya Davlieva; Wanna Zhang; Cesar A. Arias; Yousif Shamoo

ABSTRACT Daptomycin (DAP) resistance in enterococci has been linked to mutations in genes that alter the cell envelope stress response (CESR) (liaFSR) and changes in enzymes that directly affect phospholipid homeostasis, and these changes may alter membrane composition, such as that of cardiolipin synthase (Cls). While Cls substitutions are observed in response to DAP therapy, the effect of these mutations on Cls activity remains obscure. We have expressed, purified, and characterized Cls enzymes from both Enterococcus faecium S447 (residues 52 to 482; Cls447a) and Enterococcus faecalis S613 (residues 53 to 483; Cls613a) as well as Cls variants harboring a single-amino-acid change derived from DAP-resistant isolates of E. faecium. E. faecium Cls447a and E. faecalis Cls613a are tightly associated with the membrane and copurify with their substrate, phosphatidylglycerol (PG), and product, cardiolipin (CL). The amount of PG that copurifies with Cls is in molar excess to protein, suggesting that the enzyme localizes to PG-rich membrane regions. Both Cls447aH215R and Cls447aR218Q showed an increase in Vmax (μM CL/min/μM protein) from 0.16 ± 0.01 to 0.26 ± 0.02 and 0.26 ± 0.04, respectively, indicating that mutations associated with adaptation to DAP increase Cls activity. Modeling of Cls447a to Streptomyces sp. phospholipase D indicates that the adaptive mutations Cls447aH215R and Cls447aR218Q are proximal to the phospholipase domain 1 (PLD1) active site and near the putative nucleophile H217. As mutations to Cls are part of a larger genomic adaptation process, increased Cls activity is likely to be highly epistatic with other changes to facilitate DAP resistance.


Molecular Systems Biology | 2010

Evolutionary fates within a microbial population highlight an essential role for protein folding during natural selection

Matthew I. Peña; Milya Davlieva; Matthew R. Bennett; John S. Olson; Yousif Shamoo

Systems biology can offer a great deal of insight into evolution by quantitatively linking complex properties such as protein structure, folding, and function to the fitness of an organism. Although the link between diseases such as Alzheimers and misfolding is well appreciated, directly showing the importance of protein folding to success in evolution has been more difficult. We show here that predicting success during adaptation can depend critically on enzyme kinetic and folding models. We used a ‘weak link’ method to favor mutations to an essential, but maladapted, adenylate kinase gene within a microbial population that resulted in the identification of five mutants that arose nearly simultaneously and competed for success. Physicochemical characterization of these mutants showed that, although steady‐state enzyme activity is important, success within the population is critically dependent on resistance to denaturation and aggregation. A fitness function based on in vitro measurements of enzyme activity, reversible and irreversible unfolding, and the physiological context reproduces in vivo evolutionary fates in the population linking organismal adaptation to its physical basis.


Biophysical Journal | 2010

Experimental Evolution of Adenylate Kinase Reveals Contrasting Strategies toward Protein Thermostability

Corwin Miller; Milya Davlieva; Corey J. Wilson; Kristopher I. White; Rafael Couñago; Gang Wu; Jeffrey C. Myers; Pernilla Wittung-Stafshede; Yousif Shamoo

Success in evolution depends critically upon the ability of organisms to adapt, a property that is also true for the proteins that contribute to the fitness of an organism. Successful protein evolution is enhanced by mutational pathways that generate a wide range of physicochemical mechanisms to adaptation. In an earlier study, we used a weak-link method to favor changes to an essential but maladapted protein, adenylate kinase (AK), within a microbial population. Six AK mutants (a single mutant followed by five double mutants) had success within the population, revealing a diverse range of adaptive strategies that included changes in nonpolar packing, protein folding dynamics, and formation of new hydrogen bonds and electrostatic networks. The first mutation, AK(BSUB) Q199R, was essential in defining the structural context that facilitated subsequent mutations as revealed by a considerable mutational epistasis and, in one case, a very strong dependence upon the order of mutations. Namely, whereas the single mutation AK(BSUB) G213E decreases protein stability by >25 degrees C, the same mutation in the background of AK(BSUB) Q199R increases stability by 3.4 degrees C, demonstrating that the order of mutations can play a critical role in favoring particular molecular pathways to adaptation. In turn, protein folding kinetics shows that four of the five AK(BSUB) double mutants utilize a strategy in which an increase in the folding rate accompanied by a decrease in the unfolding rate results in additional stability. However, one mutant exhibited a dramatic increase in the folding relative to a modest increase in the unfolding rate, suggesting a different adaptive strategy for thermostability. In all cases, an increase in the folding rates for the double mutants appears to be the preferred mechanism in conferring additional stability and may be an important aspect of protein evolution. The range of overlapping as well as contrasting strategies for success illustrates both the power and subtlety of adaptation at even the smallest unit of change, a single amino acid.


Nucleic Acids Research | 2015

A variable DNA recognition site organization establishes the LiaR-mediated cell envelope stress response of enterococci to daptomycin

Milya Davlieva; Yiwen Shi; Paul G. Leonard; Troy A. Johnson; Michael Zianni; Cesar A. Arias; John E. Ladbury; Yousif Shamoo

LiaR is a ‘master regulator’ of the cell envelope stress response in enterococci and many other Gram-positive organisms. Mutations to liaR can lead to antibiotic resistance to a variety of antibiotics including the cyclic lipopeptide daptomycin. LiaR is phosphorylated in response to membrane stress to regulate downstream target operons. Using DNA footprinting of the regions upstream of the liaXYZ and liaFSR operons we show that LiaR binds an extended stretch of DNA that extends beyond the proposed canonical consensus sequence suggesting a more complex level of regulatory control of target operons. We go on to determine the biochemical and structural basis for increased resistance to daptomycin by the adaptive mutation to LiaR (D191N) first identified from the pathogen Enterococcus faecalis S613. LiaRD191N increases oligomerization of LiaR to form a constitutively activated tetramer that has high affinity for DNA even in the absence of phosphorylation leading to increased resistance. Crystal structures of the LiaR DNA binding domain complexed to the putative consensus sequence as well as an adjoining secondary sequence show that upon binding, LiaR induces DNA bending that is consistent with increased recruitment of RNA polymerase to the transcription start site and upregulation of target operons.


BMC Structural Biology | 2009

Biochemical and structural characterization of alanine racemase from Bacillus anthracis (Ames)

Rafael M. Couñago; Milya Davlieva; Ulrich Strych; Ryan E. Hill; Kurt L. Krause

BackgroundBacillus anthracis is the causative agent of anthrax and a potential bioterrorism threat. Here we report the biochemical and structural characterization of B. anthracis (Ames) alanine racemase (AlrBax), an essential enzyme in prokaryotes and a target for antimicrobial drug development. We also compare the native AlrBaxstructure to a recently reported structure of the same enzyme obtained through reductive lysine methylation.ResultsB. anthracis has two open reading frames encoding for putative alanine racemases. We show that only one, dal1, is able to complement a D-alanine auxotrophic strain of E. coli. Purified Dal1, which we term AlrBax, is shown to be a dimer in solution by dynamic light scattering and has a Vmax for racemization (L- to D-alanine) of 101 U/mg. The crystal structure of unmodified AlrBaxis reported here to 1.95 Å resolution. Despite the overall similarity of the fold to other alanine racemases, AlrBaxmakes use of a chloride ion to position key active site residues for catalysis, a feature not yet observed for this enzyme in other species. Crystal contacts are more extensive in the methylated structure compared to the unmethylated structure.ConclusionThe chloride ion in AlrBaxis functioning effectively as a carbamylated lysine making it an integral and unique part of this structure. Despite differences in space group and crystal form, the two AlrBaxstructures are very similar, supporting the case that reductive methylation is a valid rescue strategy for proteins recalcitrant to crystallization, and does not, in this case, result in artifacts in the tertiary structure.


BMC Microbiology | 2007

Purification and preliminary crystallization of alanine racemase from Streptococcus pneumoniae.

Ulrich Strych; Milya Davlieva; Joseph P Longtin; Eileen L Murphy; Hookang Im; Michael J. Benedik; Kurt L. Krause

BackgroundOver the past fifteen years, antibiotic resistance in the Gram-positive opportunistic human pathogen Streptococcus pneumoniae has significantly increased. Clinical isolates from patients with community-acquired pneumonia or otitis media often display resistance to two or more antibiotics. Given the need for new therapeutics, we intend to investigate enzymes of cell wall biosynthesis as novel drug targets. Alanine racemase, a ubiquitous enzyme among bacteria and absent in humans, provides the essential cell wall precursor, D-alanine, which forms part of the tetrapeptide crosslinking the peptidoglycan layer.ResultsThe alanine racemases gene from S. pneumoniae (alrSP) was amplified by PCR and cloned and expressed in Escherichia coli. The 367 amino acid, 39854 Da dimeric enzyme was purified to electrophoretic homogeneity and preliminary crystals were obtained. Racemic activity was demonstrated through complementation of an alr auxotroph of E. coli growing on L-alanine. In an alanine racemases photometric assay, specific activities of 87.0 and 84.8 U mg-1 were determined for the conversion of D- to L-alanine and L- to D-alanine, respectively.ConclusionWe have isolated and characterized the alanine racemase gene from the opportunistic human pathogen S. pneumoniae. The enzyme shows sufficient homology with other alanine racemases to allow its integration into our ongoing structure-based drug design project.


BMC Microbiology | 2011

The crystal structure of alanine racemase from Streptococcus pneumoniae, a target for structure-based drug design

Hookang Im; Miriam L. Sharpe; Ulrich Strych; Milya Davlieva; Kurt L. Krause

BackgroundStreptococcus pneumoniae is a globally important pathogen. The Gram-positive diplococcus is a leading cause of pneumonia, otitis media, bacteremia, and meningitis, and antibiotic resistant strains have become increasingly common over recent years.Alanine racemase is a ubiquitous enzyme among bacteria and provides the essential cell wall precursor, D-alanine. Since it is absent in humans, this enzyme is an attractive target for the development of drugs against S. pneumoniae and other bacterial pathogens.ResultsHere we report the crystal structure of alanine racemase from S. pneumoniae (AlrSP). Crystals diffracted to a resolution of 2.0 Å and belong to the space group P3121 with the unit cell parameters a = b = 119.97 Å, c = 118.10 Å, α = β = 90° and γ = 120°. Structural comparisons show that AlrSP shares both an overall fold and key active site residues with other bacterial alanine racemases. The active site cavity is similar to other Gram positive alanine racemases, featuring a restricted but conserved entryway.ConclusionsWe have solved the structure of AlrSP, an essential step towards the development of an accurate pharmacophore model of the enzyme, and an important contribution towards our on-going alanine racemase structure-based drug design project. We have identified three regions on the enzyme that could be targeted for inhibitor design, the active site, the dimer interface, and the active site entryway.


Nucleic Acids Research | 2014

Structure analysis of free and bound states of an RNA aptamer against ribosomal protein S8 from Bacillus anthracis

Milya Davlieva; James A. Donarski; Jiachen Wang; Yousif Shamoo; Edward P. Nikonowicz

Several protein-targeted RNA aptamers have been identified for a variety of applications and although the affinities of numerous protein-aptamer complexes have been determined, the structural details of these complexes have not been widely explored. We examined the structural accommodation of an RNA aptamer that binds bacterial r-protein S8. The core of the primary binding site for S8 on helix 21 of 16S rRNA contains a pair of conserved base triples that mold the sugar-phosphate backbone to S8. The aptamer, which does not contain the conserved sequence motif, is specific for the rRNA binding site of S8. The protein-free RNA aptamer adopts a helical structure with multiple non-canonical base pairs. Surprisingly, binding of S8 leads to a dramatic change in the RNA conformation that restores the signature S8 recognition fold through a novel combination of nucleobase interactions. Nucleotides within the non-canonical core rearrange to create a G-(G-C) triple and a U-(A-U)-U quartet. Although native-like S8-RNA interactions are present in the aptamer-S8 complex, the topology of the aptamer RNA differs from that of the helix 21-S8 complex. This is the first example of an RNA aptamer that adopts substantially different secondary structures in the free and protein-bound states and highlights the remarkable plasticity of RNA secondary structure.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2009

Structure and biochemical characterization of an adenylate kinase originating from the psychrophilic organism Marinibacillus marinus

Milya Davlieva; Yousif Shamoo

Adenylate kinases (AKs; EC 2.7.4.3) are essential members of the NMP kinase family that maintain cellular homeostasis by the interconversion of AMP, ADP and ATP. AKs play a critical role in adenylate homeostasis across all domains of life and have been used extensively as prototypes for the study of protein adaptation and the relationship of protein dynamics and stability to function. To date, kinetic studies of psychrophilic AKs have not been performed. In order to broaden understanding of extremophilic adaptation, the kinetic parameters of adenylate kinase from the psychrophile Marinibacillus marinus were examined and the crystal structure of this cold-adapted enzyme was determined at 2.0 A resolution. As expected, the overall structure and topology of the psychrophilic M. marinus AK are similar to those of mesophilic and thermophilic AKs. The thermal denaturation midpoint of M. marinus AK (321.1 K) is much closer to that of the mesophile Bacillus subtilis (320.7 K) than the more closely related psychrophile B. globisporus (316.4 K). In addition, the enzymatic properties of M. marinus AK are quite close to those of the mesophilic AK and suggests that M. marinus experiences temperature ranges in which excellent enzyme function over a broad temperature range (293-313 K) has been retained for the success of the organism. Even transient loss of AK function is lethal and as a consequence AK must be robust and be well adapted to the environment of the host organism.


Proteins | 2010

Crystal structure of a trimeric archaeal adenylate kinase from the mesophile Methanococcus maripaludis with an unusually broad functional range and thermal stability.

Milya Davlieva; Yousif Shamoo

The structure of the trimeric adenylate kinase from the Archaebacteria Methanococcus mariplaludis (AKMAR) has been solved to 2.5‐Å resolution and the temperature dependent stability and kinetics of the enzyme measured. The KM and Vmax of AKMAR exhibit only modest temperature dependence from 30°–60°C. Although M. mariplaludis is a mesophile with a maximum growth temperature of 43°C, AKMAR has a very broad functional range and stability (Tm = 74.0°C) that are more consistent with a thermophilic enzyme with high thermostability and exceptional activity over a wide range of temperatures, suggesting that this microbe may have only recently invaded a mesophilic niche and has yet to fully adapt. A comparison of the Local Structural Entropy (LSE) for AKMAR to the related adenylate kinases from the mesophile Methanococcus voltae and thermophile Methanococcus thermolithotrophicus show that changes in LSE are able to fully account for the intermediate stability of AKMAR and highlights a general mechanism for protein adaptation in this class of enzymes. Proteins 2010.

Collaboration


Dive into the Milya Davlieva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrich Strych

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Gang Wu

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Kavindra V. Singh

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge