Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Min Cheol Han is active.

Publication


Featured researches published by Min Cheol Han.


IEEE Transactions on Nuclear Science | 2015

Validation Test of Geant4 Simulation of Electron Backscattering

Sung Hun Kim; Maria Grazia Pia; Tullio Basaglia; Min Cheol Han; Gabriela Hoff; Paolo Saracco

Backscattering is a sensitive probe of the accuracy of electron scattering algorithms implemented in Monte Carlo codes. The capability of the Geant4 toolkit to describe realistically the fraction of electrons backscattered from a target volume is extensively and quantitatively evaluated in comparison with experimental data retrieved from the literature. The validation test covers the energy range between approximately 100 eV and 20 MeV, and concerns a wide set of target elements. Multiple and single electron scattering models implemented in Geant4, as well as preassembled selections of physics models distributed within Geant4, are analyzed with statistical methods. The evaluations concern Geant4 versions from 9.1 to 10.1. Significant evolutions are observed over the range of Geant4 versions, not always in the direction of better compatibility with experiment. Goodness-of-fit tests complemented by categorical analysis tests identify a configuration based on Geant4 Urban multiple scattering model in Geant4 version 9.1 and a configuration based on single Coulomb scattering in Geant4 10.0 as the physics options best reproducing experimental data above a few tens of keV. At lower energies only single scattering demonstrates some capability to reproduce data down to a few keV. Recommended preassembled physics configurations appear incapable of describing electron backscattering compatible with experiment. With the support of statistical methods, a correlation is established between the validation of Geant4-based simulation of backscattering and of energy deposition.


Annals of The Icrp | 2016

The reference phantoms: voxel vs polygon:

Yeon Soo Yeom; Thang Tat Nguyen; Zhao Jun Wang; Han Sung Kim; Min Cheol Han; Jai Ki Lee; M. Zankl; N. Petoussi-Henss; Wesley E. Bolch; Choonsik Lee; B.S. Chung

The International Commission on Radiological Protection (ICRP) reference male and female adult phantoms, described in Publication 110, are voxel phantoms based on whole-body computed tomography scans of a male and a female patient, respectively. The voxel in-plane resolution and the slice thickness, of the order of a few millimetres, are insufficient for proper segmentation of smaller tissues such as the lens of the eye, the skin, and the walls of some organs. The calculated doses for these tissues therefore present some limitations, particularly for weakly penetrating radiation. Similarly, the Publication 110 phantoms cannot represent 8–40-µm-thick target regions in respiratory or alimentary tract organs. Separate stylised models have been used to represent these tissues for calculation of the ICRP reference dose coefficients (DCs). ICRP Committee 2 recently initiated a research project, the ultimate goal of which is to convert the Publication 110 phantoms to a high-quality polygon-mesh (PM) format, including all source and target regions, even those of the 8–40-µm-thick alimentary and respiratory tract organs. It is expected that the converted phantoms would lead to the same or very similar DCs as the Publication 110 reference phantoms for penetrating radiation and, at the same time, provide more accurate DCs for weakly penetrating radiation and small tissues. Additionally, the reference phantoms in the PM format would be easily deformable and, as such, could serve as a starting point to create phantoms of various postures for use, for example, in accidental dose calculations. This paper will discuss the current progress of the phantom conversion project and its significance for ICRP DC calculations.


Physics in Medicine and Biology | 2015

Incorporation of detailed eye model into polygon-mesh versions of ICRP-110 reference phantoms.

Thang Tat Nguyen; Yeon Soo Yeom; Han Sung Kim; Zhao Jun Wang; Min Cheol Han; Jai Ki Lee; Maria Zankl; Nina Petoussi-Henss; Wesley E. Bolch; Choonsik Lee; Beom Sun Chung

The dose coefficients for the eye lens reported in ICRP 2010 Publication 116 were calculated using both a stylized model and the ICRP-110 reference phantoms, according to the type of radiation, energy, and irradiation geometry. To maintain consistency of lens dose assessment, in the present study we incorporated the ICRP-116 detailed eye model into the converted polygon-mesh (PM) version of the ICRP-110 reference phantoms. After the incorporation, the dose coefficients for the eye lens were calculated and compared with those of the ICRP-116 data. The results showed generally a good agreement between the newly calculated lens dose coefficients and the values of ICRP 2010 Publication 116. Significant differences were found for some irradiation cases due mainly to the use of different types of phantoms. Considering that the PM version of the ICRP-110 reference phantoms preserve the original topology of the ICRP-110 reference phantoms, it is believed that the PM version phantoms, along with the detailed eye model, provide more reliable and consistent dose coefficients for the eye lens.


Journal of Radiological Protection | 2016

New small-intestine modeling method for surface-based computational human phantoms

Yeon Soo Yeom; Han Sung Kim; Thang Tat Nguyen; Chansoo Choi; Min Cheol Han; Jai Ki Lee; Maria Zankl; Nina Petoussi-Henss; Wesley E. Bolch; Choonsik Lee; Beom Sun Chung

When converting voxel phantoms to a surface format, the small intestine (SI), which is usually not accurately represented in a voxel phantom due to its complex and irregular shape on one hand and the limited voxel resolutions on the other, cannot be directly converted to a high-quality surface model. Currently, stylized pipe models are used instead, but they are strongly influenced by developers subjectivity, resulting in unacceptable geometric and dosimetric inconsistencies. In this paper, we propose a new method for the construction of SI models based on the Monte Carlo approach. In the present study, the proposed method was tested by constructing the SI model for the polygon-mesh version of the ICRP reference male phantom currently under development. We believe that the new SI model is anatomically more realistic than the stylized SI models. Furthermore, our simulation results show that the new SI model, for both external and internal photon exposures, leads to dose values that are more similar to those of the original ICRP male voxel phantom than does the previously constructed stylized SI model.


Physics in Medicine and Biology | 2017

Inclusion of thin target and source regions in alimentary and respiratory tract systems of mesh-type ICRP adult reference phantoms

Han Sung Kim; Yeon Soo Yeom; Thang Tat Nguyen; Chansoo Choi; Min Cheol Han; Jai Ki Lee; Maria Zankl; Nina Petoussi-Henss; Wesley E. Bolch; Choonsik Lee; Rui Qiu; Keith F. Eckerman; Beom Sun Chung

It is not feasible to define very small or complex organs and tissues in the current voxel-type adult reference computational phantoms of the International Commission on Radiological Protection (ICRP), which limit dose coefficients for weakly penetrating radiations. To address the problem, the ICRP is converting the voxel-type reference phantoms into mesh-type phantoms. In the present study, as a part of the conversion project, the micrometer-thick target and source regions in the alimentary and respiratory tract systems as described in ICRP Publications 100 and 66 were included in the mesh-type ICRP reference adult male and female phantoms. In addition, realistic lung airway models were simulated to represent the bronchial (BB) and bronchiolar (bb) regions. The electron specific absorbed fraction (SAF) values for the alimentary and respiratory tract systems were then calculated and compared with the values calculated with the stylized models of ICRP Publications 100 and 66. The comparisons show generally good agreement for the oral cavity, oesophagus, and BB, whereas for the stomach, small intestine, large intestine, extrathoracic region, and bb, there are some differences (e.g. up to ~9 times in the large intestine). The difference is mainly due to anatomical difference in these organs between the realistic mesh-type phantoms and the simplified stylized models. The new alimentary and respiratory tract models in the mesh-type ICRP reference phantoms preserve the topology and dimensions of the voxel-type ICRP phantoms and provide more reliable SAF values than the simplified models adopted in previous ICRP Publications.


Physics in Medicine and Biology | 2016

Development of skeletal system for mesh-type ICRP reference adult phantoms

Yeon Soo Yeom; Zhao Jun Wang; Thang Tat Nguyen; Han Sung Kim; Chansoo Choi; Min Cheol Han; Jai Ki Lee; Beom Sun Chung; Maria Zankl; Nina Petoussi-Henss; Wesley E. Bolch; Choonsik Lee

The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.


IEEE Transactions on Nuclear Science | 2015

Investigation of Geant4 Simulation of Electron Backscattering

Tullio Basaglia; Min Cheol Han; Gabriela Hoff; Sung Hun Kim; Maria Grazia Pia; Paolo Saracco

A test of Geant4 simulation of electron backscattering recently published in this journal prompted further investigation into the causes of the observed behaviour. An interplay between features of geometry and physics algorithms implemented in Geant4 is found to significantly affect the accuracy of backscattering simulation in some physics configurations.


Physics in Medicine and Biology | 2017

Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS

Takuya Furuta; Tatsuhiko Sato; Min Cheol Han; Yeon Soo Yeom; Justin L Brown; Wesley E. Bolch

A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.


Physics in Medicine and Biology | 2015

New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation

Min Cheol Han; Yeon Soo Yeom; Seonghoon Kim; Jason W. Sohn

In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patients 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.


Applied Radiation and Isotopes | 2014

Development of advanced industrial SPECT system with 12-gonal diverging-collimator.

Jang Guen Park; Sung-Hee Jung; Jong Bum Kim; Jinho Moon; Min Cheol Han

Industrial single photon emission computed tomography (SPECT) is a promising diagnosis technique to investigate the dynamic behavior of process media. In the present study, a 12-gonal industrial SPECT system was developed using diverging collimators, and its performance was compared with those of hexagonal and 24-gonal systems. Of all of the systems, the 12-gonal type showed the best performance, providing (1) a detection-efficiency map without edge artifacts, (2) the best image resolution, and (3) reconstruction images that correctly furnish multi-source information. Based on the performance of the three different types of configurations, a SPECT system with 12-gonal type configuration was found most suitable for investigating and visualization of flow dynamics in industrial process systems.

Collaboration


Dive into the Min Cheol Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Saracco

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

Gabriela Hoff

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Grazia Pia

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge