Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Min-Hee Kang is active.

Publication


Featured researches published by Min-Hee Kang.


Scientific Reports | 2015

Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development

Ton Yoisungnern; Yun-Jung Choi; Jae Woong Han; Min-Hee Kang; Joydeep Das; Sangiliyandi Gurunathan; Deug-Nam Kwon; Ssang-Goo Cho; Chankyu Park; Won Kyung Chang; Byung-Soo Chang; Rangsun Parnpai; Jin-Hoi Kim

Silver nanoparticles (AgNPs) have many features that make them attractive as medical devices, especially in therapeutic agents and drug delivery systems. Here we have introduced AgNPs into mouse spermatozoa and then determined the cytotoxic effects of AgNPs on sperm function and subsequent embryo development. Scanning electron microscopy and transmission electron microscopy analyses showed that AgNPs could be internalized into sperm cells. Furthermore, exposure to AgNPs inhibited sperm viability and the acrosome reaction in a dose-dependent manner, whereas sperm mitochondrial copy numbers, morphological abnormalities, and mortality due to reactive oxygen species were significantly increased. Likewise, sperm abnormalities due to AgNPs internalization significantly decreased the rate of oocyte fertilization and blastocyst formation. Blastocysts obtained from AgNPs-treated spermatozoa showed lower expression of trophectoderm-associated and pluripotent marker genes. Overall, we propose that AgNPs internalization into spermatozoa may alter sperm physiology, leading to poor fertilization and embryonic development. Such AgNPs-induced reprotoxicity may be a valuable tool as models for testing the safety and applicability of medical devices using AgNPs.


Development | 2014

Identification and characterization of putative stem cells in the adult pig ovary

Hong-Thuy Bui; Nguyen Van Thuan; Deug-Nam Kwon; Yun-Jung Choi; Min-Hee Kang; JaeWoong Han; Teoan Kim; Jin-Hoi Kim

Recently, the concept of ‘neo-oogenesis’ has received increasing attention, since it was shown that adult mammals have a renewable source of eggs. The purpose of this study was to elucidate the origin of these eggs and to confirm whether neo-oogenesis continues throughout life in the ovaries of the adult mammal. Adult female pigs were utilized to isolate, identify and characterize, including their proliferation and differentiation capabilities, putative stem cells (PSCs) from the ovary. PSCs were found to comprise a heterogeneous population based on c-kit expression and cell size, and also express stem and germ cell markers. Analysis of PSC molecular progression during establishment showed that these cells undergo cytoplasmic-to-nuclear translocation of Oct4 in a manner reminiscent of gonadal primordial germ cells (PGCs). Hence, cells with the characteristics of early PGCs are present or are generated in the adult pig ovary. Furthermore, the in vitro establishment of porcine PSCs required the presence of ovarian cell-derived extracellular regulatory factors, which are also likely to direct stem cell niche interactions in vivo. In conclusion, the present work supports a crucial role for c-kit and kit ligand/stem cell factor in stimulating the growth, proliferation and nuclear reprogramming of porcine PSCs, and further suggests that porcine PSCs might be the culture equivalent of early PGCs.


International Journal of Nanomedicine | 2015

silver nanoparticles cause complications in pregnant mice

Xi-Feng Zhang; Jung Hyun Park; Yun-Jung Choi; Min-Hee Kang; Sangiliyandi Gurunathan; Jin-Hoi Kim

Background Silver nanoparticles (AgNPs) have attracted much interest and have been used for antibacterial, antifungal, anticancer, and antiangiogenic applications because of their unique properties. The increased usage of AgNPs leads to a potential hazard to human health. However, the potential effects of AgNPs on animal models are not clear. This study was designed to investigate the potential impact of AgNPs on pregnant mice. Methods The synthesis of AgNPs was performed using culture extracts of Bacillus cereus. The synthesized AgNPs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. AgNPs were administrated into pregnant mice via intravenous infusion at 1.0 mg/kg doses at 6.5 days postcoitum (dpc). At 13.5, 15.5, and 17.5 dpc, the pregnant mice were euthanized, and the embryo and placenta were isolated. The meiotic status of oocytes was evaluated. DNA methylation studies were performed, and aberrant imprinting disrupted fetal, placental, and postnatal development. Quantitative real-time polymerase chain reaction analysis and Western blot were used to analyze various gene expressions. Results The synthesized AgNPs were uniformly distributed and were spherical in shape with an average size of 8 nm. AgNPs exposure increased the meiotic progression of female germ cells in the fetal mouse ovaries, and maternal AgNP exposure significantly disrupted imprinted gene expression in 15.5 dpc embryos and placentas, such as Ascl2, Snrpn, Kcnq1ot1, Peg3, Zac1, H19, Igf2r, and Igf2; DNA methylation studies revealed that AgNPs exposure significantly altered the methylation levels of differentially methylated regions of Zac1. Conclusion The results from this study indicated that early exposure to AgNPs has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta. These results can contribute to research involved in the safe use of various biomedical applications of AgNPs and improves the understanding of the development of AgNPs in biomedical applications.


Scientific Reports | 2016

Hypoxia-mediated autophagic flux inhibits silver nanoparticle-triggered apoptosis in human lung cancer cells.

Jae-Kyo Jeong; Sangiliyandi Gurunathan; Min-Hee Kang; Jae Woong Han; Joydeep Das; Yun-Jung Choi; Deug-Nam Kwon; Ssang-Goo Cho; Chankyu Park; Han Geuk Seo; Hyuk Song; Jin-Hoi Kim

Solid tumors are frequently associated with resistance to chemotherapy because the fraction of hypoxic tumor cells is substantial. To understand the underlying mechanism of hypoxia on silver nanoparticle (AgNPs)-induced apoptosis, the expression of hypoxia-inducible factor (HIF)-1α, a hallmark of hypoxia, was measured in the presence and absence of AgNPs. The results showed that HIF-1α expression was upregulated after AgNPs treatment under both hypoxic and normoxic conditions. Cell viability assays showed that AgNPs promoted cell death in cancer cells but not in non-cancer cells, as cancer cells are slightly more acidic than normal cells. However, reactive oxygen species generation induced by AgNPs in lung cancer cells caused high susceptibility to oxidative stress, whereas pre-exposure to hypoxia blocked AgNPs-induced oxidative stress. Notably, HIF-1α inhibited AgNPs-induced mitochondria-mediated apoptosis by regulating autophagic flux through the regulation of ATG5, LC3-II, and p62. Further, cell viability after treatment of cancer cells with AgNPs under hypoxic conditions was lower in HIF-1α siRNA-transfected cells than in control siRNA-transfected cells, indicating that HIF-1α knockdown enhances hypoxia induced decrease in cell viability. Our results suggest that hypoxia-mediated autophagy may be a mechanism for the resistance of AgNPs-induced apoptosis and that strategies targeting HIF-1α may be used for cancer therapy.


Scientific Reports | 2015

Hexavalent chromium induces apoptosis in male somatic and spermatogonial stem cells via redox imbalance.

Joydeep Das; Min-Hee Kang; Eunsu Kim; Deug-Nam Kwon; Yun-Jung Choi; Jin-Hoi Kim

Hexavalent chromium [Cr(VI)], an environmental toxicant, causes severe male reproductive abnormalities. However, the actual mechanisms of toxicity are not clearly understood and have not been studied in detail. The present in vitro study aimed to investigate the mechanism of reproductive toxicity of Cr(VI) in male somatic cells (mouse TM3 Leydig cells and TM4 Sertoli cells) and spermatogonial stem cells (SSCs) because damage to or dysfunction of these cells can directly affect spermatogenesis, resulting in male infertility. Cr(VI) by inducing oxidative stress was cytotoxic to both male somatic cells and SSCs in a dose-dependent manner, and induced mitochondria-dependent apoptosis. Although the mechanism of Cr(VI)-induced cytotoxicity was similar in both somatic cells, the differences in sensitivity of TM3 and TM4 cells to Cr(VI) could be attributed, at least in part, to cell-specific regulation of P-AKT1, P-ERK1/2, and P-P53 proteins. Cr(VI) affected the differentiation and self-renewal mechanisms of SSCs, disrupted steroidogenesis in TM3 cells, while in TM4 cells, the expression of tight junction signaling and cell receptor molecules was affected as well as the secretory functions were impaired. In conclusion, our results show that Cr(VI) is cytotoxic and impairs the physiological functions of male somatic cells and SSCs.


BMC Research Notes | 2014

Evaluation of reference genes in mouse preimplantation embryos for gene expression studies using real-time quantitative RT-PCR (RT-qPCR)

Jae-Kyo Jeong; Min-Hee Kang; Sangiliyandi Gurunathan; Ssang-Goo Cho; Chankyu Park; Han Geuk Seo; Jin-Hoi Kim

BackgroundReal-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) is the most sensitive, and valuable technique for rare mRNA detection. However, the expression profiles of reference genes under different experimental conditions, such as different mouse strains, developmental stage, and culture conditions have been poorly studied.ResultsmRNA stability of the actb, gapdh, sdha, ablim, ywhaz, sptbn, h2afz, tgfb1, 18xa0s and wrnip genes was analyzed. Using the NormFinder program, the most stable genes are as follows: h2afz for the B6D2F-1 and C57BL/6 strains; sptbn for ICR; h2afz for KOSOM and CZB cultures of B6D2F-1 and C57BL/6 strain-derived embryos; wrnip for M16 culture of B6D2F-1 and C57BL/6 strain-derived embryos; ywhaz, tgfb1, 18xa0s, 18xa0s, ywhaz, and h2afz for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst embryonic stages cultured in KSOM medium, respectively; h2afz, wrnip, wrnip, h2afz, ywhaz, and ablim for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in CZB medium, respectively; 18xa0s, h2afz, h2afz, actb, h2afz, and wrnip for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in M16 medium, respectively.ConclusionsThese results demonstrated that candidate reference genes for normalization of target gene expression using RT-qPCR should be selected according to mouse strains, developmental stage, and culture conditions.


Theranostics | 2017

The cytotoxic effects of dimethyl sulfoxide in mouse preimplantation embryos: a mechanistic study

Min-Hee Kang; Joydeep Das; Sangiliyandi Gurunathan; Hwan-Woo Park; Hyuk Song; Chankyu Park; Jin-Hoi Kim

Rationale: Dimethyl sulfoxide (DMSO) is commonly used as a solvent for water-insoluble substances, a vehicle for drug therapy, and a cryoprotectant for cultured cells. DMSO induced embryonic defects and its mechanism of action remains unclear. The rationale is based on the assumption that DMSO supplementation should induce long-term negative effects on both pre- and post-implantation embryo development. Methods: DMSO induced oxidative stress, ER stress, autophagy, mitophagy, signaling responsible genes and proteins were determined by RT-qPCR, Western blotting, immunofluorescence, and confocal microscopy. DMSO induced mitochondrial dysfunction was measured by transmission electron microcopy and JC-1 assay. Apoptosis was estimated using TUNEL and comet assay. Post-implantation embryo developmental capability was estimated by implantation site and fetus numbers. Results: Exposure to DMSO induced an early oxidative stress response within 0.5 to 2 h in 1-cell zygotes by disrupting the balance of pro- and anti-oxidants. Notably, DMSO-treated 2-cell embryos showed increased expression of unfolded protein response genes such as Hspa5, Hsp90b1, Ddit3, Atf4, and Xbp1. As a result, the development of many embryos is arrested at the 2-cell, 4-cell, or morula stages in a dose-dependent manner. Further, DMSO-induced endoplasmic reticulum stress increased mitochondrial Ca2+ levels, induced mitochondrial depolarization/dysfunction, and induced apoptotic cell death via the JNK/ATF2-dependent pathway. Consequently, treatment with DMSO increased the expression of autophagy initiation-, phagophore elongation-, and autophagosome formation-related genes, as well as localization of PINK1/Parkin, which are the main mediators of mitophagy, in mitochondria. Interestingly, DMSO causes cytotoxic effects in preimplantation embryos by inducing extensive mitophagy and autophagy. Especially, DMSO treatment decreased the inner cell mass and trophectoderm cell numbers as well as mRNA expression of B3gnt5 and Wnt3a in developed blastocysts, which decreased the implantation and developmental rates of full-term offspring after being transferred into pseudopregnant mice. Conclusion: These results provide a significant contribution to finding effective protective agents to combat DMSO mediated reproductive toxicity for application in human embryos in the near future.


Theriogenology | 2015

Pifithrin-α ameliorates resveratrol-induced two-cell block in mouse preimplantation embryos in vitro

Jae-Kyo Jeong; Min-Hee Kang; Sangiliyandi Gurunathan; Ssang-Goo Cho; Chankyu Park; Jin-Ki Park; Jin-Hoi Kim

Treatment with resveratrol at concentrations greater than 0.5xa0μmol/L resulted in the arrest of mouse embryo development at the two-cell stage. Resveratrol-induced cytotoxicity was investigated in embryos by evaluating morphologic features by using the bromodeoxyuridine assay and acridine orange and ethidium bromide double staining. Resveratrol was found to significantly increase the expressions of p53, p21, Atf3, smac/Diablo, Bax, Bak1, Bok, and Noxa mRNA in the embryos, whereas Cullin 3 and Cdk1 expressions were decreased. Furthermore, active p53 positive signal in embryos arrested at the two-cell stage was localized in the nucleus, whereas no active p53 signal was observed in control embryos. Pretreatment with pifithrin-α, a p53 inhibitor, downregulated active p53 in two-cell embryo nuclei and ameliorated approximately 50% of the embryonic developmental defect caused by resveratrol. The findings of the present study, therefore, suggest that pifithrin-α could be used as an effective cytoprotective agent against a reproductive toxin such as resveratrol.


Journal of Small Animal Practice | 2014

Unusual congenital pulmonary anomaly with presumed left lung hypoplasia in a young dog.

Choonghwan Lee; Ju-Won Kim; Min-Hee Kang; Kidong Eom; Hyun-Ah Park

A seven-month-old, entire, male miniature schnauzer dog was referred with acute vomiting, inappetence and depression primarily as a result of a gastric foreign body (pine cones). During investigations, thoracic radiographs revealed increased volume of the right lung lobes, deviated cardiomediastinal structures and elevation of the heart from the sternum. Thoracic computed tomography revealed left cranial lung lobe hypoplasia and extension of the right cranial lung parenchyma across the midline to the left hemithorax. Branches of the right pulmonary vessels and bronchi also crossed the midline and extended to the left caudal lung lobe. These findings suggested that the right and left lungs were fused. In humans this finding is consistent with horseshoe lung, which is an uncommon congenital malformation. To the authors knowledge, this case represents the first report of such a pulmonary anomaly in a dog.


Molecules | 2018

Combination Effect of Silver Nanoparticles and Histone Deacetylases Inhibitor in Human Alveolar Basal Epithelial Cells

Sangiliyandi Gurunathan; Min-Hee Kang; Jin-Hoi Kim

Although many treatment strategies have been reported for lung disease, the mechanism of combination therapy using silver nanoparticles (AgNPs) and histone deacetylases inhibitors (HDACi) remains unclear. Therefore, innovative treatment strategies are essential for addressing the therapeutic challenges of this highly aggressive lung cancer. AgNPs and HDACi seem to be the best candidates for anticancer therapy because of their anti-proliferative effect in a variety of cancer cells. First, we synthesized AgNPs using wogonin as a reducing and stabilizing agent, following which the synthesized AgNPs were characterized by various analytical techniques. The synthesized AgNPs exhibited dose- and size-dependent toxicity towards A549 cells. Interestingly, the combination of AgNPs and MS-275 significantly induces apoptosis, which was accompanied by an increased level of reactive oxygen species (ROS); leakage of lactate dehydrogenase (LDH); secretion of TNFα; dysfunction of mitochondria; accumulation autophagosomes; caspase 9/3 activation; up and down regulation of pro-apoptotic genes and anti-apoptotic genes, respectively; and eventually, induced DNA-fragmentation. Our findings suggest that AgNPs and MS-275 induce cell death in A549 lung cells via the mitochondrial-mediated intrinsic apoptotic pathway. Finally, our data show that the combination of AgNPs and MS-275 is a promising new approach for the treatment of lung cancer and our findings contribute to understanding the potential roles of AgNPs and MS-275 in pulmonary disease. However, further study is warranted to potentiate the use of this combination therapy in cancer therapy trials.

Collaboration


Dive into the Min-Hee Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge