Min-Juan Xu
Shanghai Jiao Tong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Min-Juan Xu.
Journal of Investigative Dermatology | 2013
Xiao-Jin Liu; Min-Juan Xu; Si-Teng Fan; Zheng Wu; Jun Li; Xiao-Mei Yang; Ya-Hui Wang; Jun Xu; Zhi-Gang Zhang
Hypertrophic scarring is a common disease affecting millions of people around the world, but there are currently no satisfactory drugs to treat the disease. Exaggerated inflammation and mechanical stress have been shown to be two main mechanisms of excessive fibrotic diseases. Here we found that a benzopyran natural product, xiamenmycin, could significantly attenuate hypertrophic scar formation in a mechanical stretch-induced mouse model. The compound suppressed local inflammation by reducing CD4+ lymphocyte and monocyte/macrophage retention in fibrotic foci and blocked fibroblast adhesion with monocytes. Both in vivo and in vitro studies found that the compound inhibited the mechanical stress-induced profibrotic effects by suppressing proliferation, activation, fibroblast contraction, and inactivating FAK, p38, and Rho guanosine triphosphatase signaling. Taken together, the compound could simultaneously suppress both the inflammatory and mechanical stress responses, which are the two pivotal pathological processes in hypertrophic scar formation, thus suggesting that xiamenmycin can serve as a potential agent for treating hypertrophic scar formation and other excessive fibrotic diseases.
Marine Drugs | 2012
Min-Juan Xu; Xiao-Jin Liu; Yi-Lei Zhao; Dong Liu; Zhen-Hao Xu; Xiao-Meng Lang; Ping Ao; Wenhan Lin; Song-Lin Yang; Zhi-Gang Zhang; Jun Xu
An anti-fibrotic compound produced by Streptomycesn xiamenensis, found in mangrove sediments, was investigated for possible therapeutic effects against fibrosis. The compound, N-[[3,4-dihydro-3S-hydroxy-2S-methyl-2-(4′R-methyl-3′S-pentenyl)-2H-1-benzopyran-6-yl]carbonyl]-threonine (1), was isolated from crude extracts and its structure, including the absolute configuration was determined by extensive spectroscopic data analyses, Mosher’s method, Marfey’s reagent and quantum mechanical calculations. In terms of biological effects, this compound inhibits the proliferation of human lung fibroblasts (WI26), blocks adhesion of human acute monocytic leukemia cells (THP-1) to a monolayer of WI26 cells, and reduces the contractile capacity of WI26 cells in three-dimensional free-floating collagen gels. Altogether, these data indicate that we have identified a bioactive alkaloid (1) with multiple inhibitory biological effects on lung excessive fibrotic characteristics, that are likely involved in fibrosis, suggesting that this molecule might indeed have therapeutic potential against fibrosis.
Molecules | 2010
Xiao-Ling Li; Min-Juan Xu; Yi-Lei Zhao; Jun Xu
Mangrove Streptomyces represent a rich source of novel bioactive compounds in medicinal research. A novel alkaloid, named 1-N-methyl-3-methylamino-[N-butanoic acid-3′-(9′-methyl-8′-propen-7′-one)-amide]-benzo[f][1,7]naphthyridine-2-one (1) was isolated from Streptomyces albogriseolus originating from mangrove sediments. The structure of compound 1 was elucidated by extensive spectroscopic data analyses and verified by the 13C-NMR calculation at the B3LYP/6-311+G(2d,p) level of theory.
Marine Drugs | 2013
Xue-Gong Li; Xiao-Min Tang; Jing Xiao; Guang-Hui Ma; Li Xu; Shu-Jie Xie; Min-Juan Xu; Xiang Xiao; Jun Xu
Mangrove-derived actinomycetes are promising sources of bioactive natural products. In this study, using homologous screening of the biosynthetic genes and anti-microorganism/tumor assaying, 163 strains of actinomycetes isolated from mangrove sediments were investigated for their potential to produce halogenated metabolites. The FADH2-dependent halogenase genes, identified in PCR-screening, were clustered in distinct clades in the phylogenetic analysis. The coexistence of either polyketide synthase (PKS) or nonribosomal peptide synthetase (NRPS) as the backbone synthetases in the strains harboring the halogenase indicated that these strains had the potential to produce structurally diversified antibiotics. As a validation, a new enduracidin producer, Streptomyces atrovirens MGR140, was identified and confirmed by gene disruption and HPLC analysis. Moreover, a putative ansamycin biosynthesis gene cluster was detected in Streptomyces albogriseolus MGR072. Our results highlight that combined genome mining is an efficient technique to tap promising sources of halogenated natural products synthesized by mangrove-derived actinomycetes.
Marine Drugs | 2013
Zhong-Yuan You; Ya-Hui Wang; Zhi-Gang Zhang; Min-Juan Xu; Shu-Jie Xie; Tie-Sheng Han; Lei Feng; Xue-Gong Li; Jun Xu
The benzopyran compound obtained by cultivating a mangrove-derived strain, Streptomyces xiamenensis strain 318, shows multiple biological effects, including anti-fibrotic and anti-hypertrophic scar properties. To increase the diversity in the structures of the available benzopyrans, by means of biosynthesis, the strain was screened for spontaneous rifampicin resistance (Rif), and a mutated rpsL gene to confer streptomycin resistance (Str), was introduced into the S. xiamenensis strain M1-94P that originated from deep-sea sediments. Two new benzopyran derivatives, named xiamenmycin C (1) and D (2), were isolated from the crude extracts of a selected Str-Rif double mutant (M6) of M1-94P. The structures of 1 and 2 were identified by analyzing extensive spectroscopic data. Compounds 1 and 2 both inhibit the proliferation of human lung fibroblasts (WI26), and 1 exhibits better anti-fibrotic activity than xiamenmycin. Our study presents the novel bioactive compounds isolated from S. xiamenensis mutant strain M6 constructed by ribosome engineering, which could be a useful approach in the discovery of new anti-fibrotic compounds.
Scientific Reports | 2017
Helin Yu; Shu-Heng Jiang; Xu-Liang Bu; Jia-Hua Wang; Jing-Yi Weng; Xiao-Mei Yang; Kun-Yan He; Zhi-Gang Zhang; Ping Ao; Jun Xu; Min-Juan Xu
Polycyclic tetramate macrolactams (PTMs) were identified as distinct secondary metabolites of the mangrove-derived Streptomyces xiamenensis 318. Together with three known compounds—ikarugamycin (1), capsimycin (2) and capsimycin B (3)—two new compounds, capsimycin C (4) with trans-diols and capsimycin D (5) with trans-configurations at C-13/C-14, have been identified. The absolute configurations of the tert/tert-diols moiety was determined in 4 by NMR spectroscopic analysis, CD spectral comparisons and semi-synthetic method. The post-modification mechanism of the carbocyclic ring at C-14/C-13 of compound 1 in the biosynthesis of an important intermediate 3 was investigated. A putative cytochrome P450 superfamily gene, SXIM_40690 (ikaD), which was proximally localized to the ikarugamycin biosynthetic pathway, was characterized. In vivo gene inactivation and complementation experiment confirmed that IkaD catalysed the epoxide-ring formation reaction and further hydroxylation of ethyl side chain to form capsimycin G (3′). Binding affinities and kinetic parameters for the interactions between ikarugamycin (1) and capsimycin B (3) with IkaD were measured with Surface Plasmon Resonance. The intermediate compound 3′ was isolated and identified as 30-hydroxyl-capsimycin B. The caspimycins 2 and 3, were transferred to methoxyl derivatives, 6 and 7, under acidic and heating conditions. Compounds 1–3 exhibited anti-proliferative activities against pancreatic carcinoma with IC50 values of 1.30–3.37u2009μM.
Iet Systems Biology | 2016
Min-Juan Xu; Yongcong Chen; Jun Xu; Ping Ao; Xiaomei Zhu
Xiamenmycins, a series of prenylated benzopyran compounds with anti-fibrotic bioactivities, were isolated from a mangrove-derived Streptomyces xiamenensis. To fulfil the requirements of pharmaceutical investigations, a high production of xiamenmycin is needed. In this study, the authors present a kinetic metabolic model to evaluate fluxes in an engineered Streptomyces lividans with xiamenmycin-oriented genetic modification based on generic enzymatic rate equations and stability constraints. Lyapunov function was used for a viability optimisation. From their kinetic model, the flux distributions for the engineered S. lividans fed on glucose and glycerol as carbon sources were calculated. They found that if the bacterium can utilise glucose simultaneously with glycerol, xiamenmycin production can be enhanced by 40% theoretically, while maintaining the same growth rate. Glycerol may increase the flux for phosphoenolpyruvate synthesis without interfering citric acid cycle. They therefore believe this study demonstrates a possible new direction for bioengineering of S. lividans.
Marine Drugs | 2015
Feng Lei; Du Gao; Xi Zhang; Jun Xu; Min-Juan Xu
Xiamenmycin A is an antifibrotic leading compound with a benzopyran skeleton that is isolated from mangrove-derived Streptomyces xiamenensis. As a promising small molecule for fibrotic diseases, less information is known about its metabolic characteristics in vivo. In this study, the time-course of xiamenmycin A in mouse plasma was investigated by relative quantification. After two types of administration of xiamenmycin A at a single dose of 10 mg/kg, the plasma concentrations were measured quantitatively by LC-MS/MS. The dynamic changes in the xiamenmycin A concentration showed rapid absorption and quick elimination in plasma post-administration. Four metabolites (M1–M4) were identified in blood by UPLC-QTOF-MS, and xiamenmycin B (M3) is the principal metabolite in vivo, as verified by comparison of the authentic standard sample. The structures of other metabolites were identified based on the characteristics of their MS and MS/MS data. The newly identified metabolites are useful for understanding the metabolism of xiamenmycin A in vivo, aiming at the development of an anti-fibrotic drug candidate for the therapeutic treatment of excessive fibrotic diseases.
Journal of Theoretical Biology | 2014
Jie Hu; Xiaomei Zhu; Xinan Wang; Ruoshi Yuan; Wei Zheng; Min-Juan Xu; Ping Ao
Cellular replicative capacity is a therapeutic target for regenerative medicine as well as cancer treatment. The mechanism of replicative senescence and cell immortality is still unclear. We investigated the diauxic growth of Saccharomyces cerevisiae and demonstrate that the replicative capacity revealed by the yeast growth curve can be understood by using the dynamical property of the molecular-cellular network regulating S. cerevisiae. The endogenous network we proposed has a limit cycle when pheromone signaling is disabled, consistent with the exponential growth phase with an infinite replicative capacity. In the post-diauxic phase, the cooperative effect of the pheromone activated mitogen-activated protein kinase (MAPK) signaling pathway with the cell cycle leads to a fixed point attractor instead of the limit cycle. The cells stop dividing after several generations counting from the beginning of the post-diauxic growth. By tuning the MAPK pathway, S. cerevisiae therefore programs the number of offsprings it replicates.
Physical Review E | 2016
Yongcong Chen; Ruoshi Yuan; Ping Ao; Min-Juan Xu; Xiaomei Zhu
While the biochemistry of metabolism in many organisms is well studied, details of the metabolic dynamics are not fully explored yet. Acquiring adequate in vivo kinetic parameters experimentally has always been an obstacle. Unless the parameters of a vast number of enzyme-catalyzed reactions happened to fall into very special ranges, a kinetic model for a large metabolic network would fail to reach a steady state. In this work we show that a stable metabolic network can be systematically established via a biologically motivated regulatory process. The regulation is constructed in terms of a potential landscape description of stochastic and nongradient systems. The constructed process draws enzymatic parameters towards stable metabolism by reducing the change in the Lyapunov function tied to the stochastic fluctuations. Biologically it can be viewed as interplay between the flux balance and the spread of workloads on the network. Our approach allows further constraints such as thermodynamics and optimal efficiency. We choose the central metabolism of Methylobacterium extorquens AM1 as a case study to demonstrate the effectiveness of the approach. Growth efficiency on carbon conversion rate versus cell viability and futile cycles is investigated in depth.