Xiao-Mei Yang
Shanghai Jiao Tong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiao-Mei Yang.
Tumor Biology | 2012
Zheng Wu; Zhiyong Wu; Jun Li; Xiao-Mei Yang; Yahui Wang; Yi Yu; Jun Ye; Congjian Xu; Wenxin Qin; Zhi-Gang Zhang
Melanoma cell adhesion molecule (MCAM) is a cell adhesion molecule that is abnormally expressed in a variety of tumours and is closely associated with tumour metastasis. The role of MCAM in ovarian cancer development has not been fully studied. In this study, through immunohistochemical staining of ovarian cancer tissue samples and RNA interference to silence MCAM in ovarian cancer cells, we examined the impact of MCAM on the biological functions of ovarian cancer cells and attempted to reveal the role of MCAM in ovarian cancer development. Our results showed that MCAM expression was particularly high in metastatic ovarian cancers compared with other pathological types of ovarian epithelial tissues. After MCAM silencing in the MCAM high-expression ovarian cancer cell line SKOV-3, the cell apoptosis was increased, whereas the cell spreading and invasion were significantly reduced, which may be related with dysregulation of small RhoGTPase (RhoA and Cdc42).These results suggest that MCAM expression in ovarian cancer is highly correlated with the metastatic potential of the cancer. MCAM is likely to participate in the regulation of the Rho signalling pathway to protect ovarian cancer cells from apoptosis and promote their malignant invasion and metastasis. Therefore, MCAM can be used not only as a molecular marker to determine the prognosis of ovarian cancer but also as a therapeutic target in metastatic ovarian cancer.
Journal of Hepatology | 2014
Jun Li; Xiao-Mei Yang; Ya-Hui Wang; Ming-Xuan Feng; Xiao-Jin Liu; Yan-Li Zhang; Shuo Huang; Zheng Wu; Feng Xue; Wenxin Qin; Jianren Gu; Qiang Xia; Zhi-Gang Zhang
BACKGROUND & AIMS Monoamine oxidase A (MAOA), a catecholamine neurotransmitter degrading enzyme, is closely associated with neurological and psychiatric disorders. However, its role in cancer progression remains unknown. METHODS Hepatocellular carcinoma (HCC) tissue arrays (n=254) were used to investigate the correlation between MAOA expression and clinicopathological findings. In vitro invasion and anoikis assays, and in vivo intrahepatic and lung metastasis models were used to determine the role of MAOA in HCC metastasis. Quantitative real-time PCR, western blotting, immunohistochemical staining and HPLC analysis were performed to uncover the mechanism of MAOA in HCC. RESULTS We found that MAOA expression was significantly downregulated in 254 clinical HCC samples and was closely correlated with cancer vasoinvasion, metastasis, and poor prognoses. We then demonstrated that MAOA suppressed norepinephrine/epinephrine (NE/E)-induced HCC invasion and anoikis inhibition, and uncovered that the effects of NE/E on HCC behaviors were primarily mediated through alpha 1A (ADRA1A) and beta 2 adrenergic receptors (ADRB2). In addition to the canonical signaling pathway, which is mediated via adrenergic receptors (ADRs), we found that ADR-mediated EGFR transactivation was also involved in NE-induced HCC invasion and anoikis inhibition. Notably, we found that MAOA could synergize with EGFR inhibitors or ADR antagonists to abrogate NE-induced HCC behaviors. CONCLUSIONS Taken together, the results of our study may provide insights into the application of MAOA as a novel predictor of clinical outcomes and indicate that increasing MAOA expression or enzyme activity may be a new approach that can be used for HCC treatment.
Journal of Investigative Dermatology | 2013
Xiao-Jin Liu; Min-Juan Xu; Si-Teng Fan; Zheng Wu; Jun Li; Xiao-Mei Yang; Ya-Hui Wang; Jun Xu; Zhi-Gang Zhang
Hypertrophic scarring is a common disease affecting millions of people around the world, but there are currently no satisfactory drugs to treat the disease. Exaggerated inflammation and mechanical stress have been shown to be two main mechanisms of excessive fibrotic diseases. Here we found that a benzopyran natural product, xiamenmycin, could significantly attenuate hypertrophic scar formation in a mechanical stretch-induced mouse model. The compound suppressed local inflammation by reducing CD4+ lymphocyte and monocyte/macrophage retention in fibrotic foci and blocked fibroblast adhesion with monocytes. Both in vivo and in vitro studies found that the compound inhibited the mechanical stress-induced profibrotic effects by suppressing proliferation, activation, fibroblast contraction, and inactivating FAK, p38, and Rho guanosine triphosphatase signaling. Taken together, the compound could simultaneously suppress both the inflammatory and mechanical stress responses, which are the two pivotal pathological processes in hypertrophic scar formation, thus suggesting that xiamenmycin can serve as a potential agent for treating hypertrophic scar formation and other excessive fibrotic diseases.
Neoplasia | 2014
Ming-Ze Ma; Chun Zhuang; Xiao-Mei Yang; Zi-Zhen Zhang; Hong Ma; Wen-Ming Zhang; Haiyan You; Wenxin Qin; Jianren Gu; Shengli Yang; Hui Cao; Zhi-Gang Zhang
Gastrointestinal stromal tumors (GISTs) are the major gastrointestinal mesenchymal tumors with a variable malignancy ranging from a curable disorder to highly malignant sarcomas. Metastasis and recurrence are the main causes of death in GIST patients. To further explore the mechanism of metastasis and to more accurately estimate the recurrence risk of GISTs after surgery, the clinical significance and functional role of collagen triple helix repeat containing-1 (CTHRC1) in GIST were investigated. We found that CTHRC1 expression was gradually elevated as the risk grade of NIH classification increased, and was closely correlated with disease-free survival and overall survival in 412 GIST patients. In vitro experiments showed that recombinant CTHRC1 protein promoted the migration and invasion capacities of primary GIST cells. A luciferase reporter assay and pull down assay demonstrated that recombinant CTHRC1 protein activated noncanonical Wnt/PCP-Rho signaling but inhibited canonical Wnt signaling. The pro-motility effect of CTHRC1 on GIST cells was reversed by using a Wnt5a neutralizing antibody and inhibitors of Rac1 or ROCK. Taken together, these data indicate that CTHRC1 may serve as a new predictor of recurrence risk and prognosis in post-operative GIST patients and may play an important role in facilitating GIST progression. Furthermore, CTHRC1 promotes GIST cell migration and invasion by activating Wnt/PCP-Rho signaling, suggesting that the CTHRC1-Wnt/PCP-Rho axis may be a new therapeutic target for interventions against GIST invasion and metastasis.
Tumor Biology | 2014
Shan-Yun Wen; Li-Na Zhang; Xiao-Mei Yang; Yan-Li Zhang; Li Ma; Qiu-Lin Ge; Shu-Heng Jiang; Xiao-Lu Zhu; Wei Xu; Wen-Jing Ding; Bing-Qing Yang; Zhi-Gang Zhang; Yin-Cheng Teng
Endometrial cancer (EC) is one of the most common female malignancies. The patients with high-risk factors may have poor prognosis. Therefore, there is an urgent need to find a new molecule to more accurately predict survival of patients. Leucine-rich-alpha-2-glycoprotein1 (LRG1), one of leucine-rich repeat family, was closely associated with cancer metastasis and poor prognosis. The biological functions and the expression level of LRG1 remain obscure in EC. In this study, by immunohistochemical analysis of 242 EC patient tissues, we found that LRG1 expression was associated with stage and lymphatic metastasis in both test cohort (133 patients) and validation cohort (109 patients). Furthermore, to investigate the prognostic value of LRG1 in endometrial carcinoma, we analyzed the correlation between variables and overall survival with Cox proportional hazard regression. The result showed that LRG1 was an independent prognostic factor for overall survival of endometrial carcinoma patients. To further evaluate the prognostic efficiency of LRG1 in endometrial carcinoma, we compared the sensitivity and specificity of LRG1 in endometrial carcinoma prognosis by logistic regression. The result showed that LRG1 combining with other clinicopathological risk factors was a stronger prognostic model than clinicopathological risk factors alone or their combination. Thus, LRG1 potentially offered clinical value in directing personal treatment for endometrial carcinoma patients.
Hepatology | 2015
Hui-Zhen Nie; Jun Li; Xiao-Mei Yang; Qing‐Zhen Cao; Ming-Xuan Feng; Feng Xue; Lin Wei; Wenxin Qin; Jianren Gu; Qiang Xia; Zhi-Gang Zhang
Hormones and their corresponding receptors are vital in controlling metabolism under normal physiologic and pathologic conditions, but less is known about their roles in the metabolism of cancer. Using a small interfering RNA screening approach, we examined the effects of silencing 20 well‐known hormone receptors on the Warburg effect, specifically by measuring the production of lactate in four established hepatocellular carcinoma (HCC) cell lines. We found that silencing a variety of hormone receptors had effects on the production of this metabolite. Unexpectedly silencing of mineralocorticoid receptor (MR) significantly increased lactate production in all these HCC cell lines. Subsequent in vitro and in vivo studies showed that gain‐ and loss‐of‐function of MR significantly influenced HCC cellular proliferation, cell cycle distribution, and apoptosis. Furthermore, mechanistic studies revealed that MR as a transcriptional factor directly regulated the expression of miR‐338‐3p, suppressing the Warburg effects of HCC cells by targeting a key enzyme of glycolysis: pyruvate kinase, liver and red blood cells. Moreover, MR expression was significantly down‐regulated in 81% of HCC patient tissues, caused by both chromosome deletion and histone deacetylation. Low expression of MR in tumor tissues was associated with poor patient prognosis. The expression level of miR‐338‐3p was found to positively correlate with the expression of MR in HCC tissues and to inversely correlate with expression of the enzyme pyruvate kinase, liver and red blood cells. Conclusion: MR affects HCC development by modulating the miR‐338‐3p/pyruvate kinase, liver and red blood cells axis with an ability to suppress the Warburg effect. (Hepatology 2015;62:1145‐1159)
PLOS ONE | 2013
Xiao-Jin Liu; Fan-Zhi Kong; Ya-Hui Wang; Jiang-Hong Zheng; Weidong Wan; Chen-Liang Deng; Guang-Yu Mao; Jun Li; Xiao-Mei Yang; Yan-Li Zhang; Xue-Li Zhang; Song-Lin Yang; Zhi-Gang Zhang
Lumican is a dermatan sulfate proteoglycan highly expressed in connective tissue and has the ability to regulate collagen fibril assembly. Previous studies have shown that lumican is involved in wound healing, but the precise effects of lumican on reepithelialization and wound contraction, the two pivotal aspects of skin wound healing, have not been investigated. Here we explored the roles of lumican in fibroblast contractility, a main aspect of skin wound healing, by adopting mice skin wound healing model and the corresponding in vitro cellular experiments. Our results showed that lumican can promote skin wound healing by facilitating wound fibroblast activation and contraction but not by promoting keratinocyte proliferation and migration. Silencing of integrin α2 completely abolished the pro-contractility of lumican, indicating lumican enhances fibroblast contractility via integrin α2. Our study for the first time demonstrated that lumican can affect fibroblast’s mechanical property, which is pivotal for many important pathological processes, such as wound healing, fibrosis, and tumor development, suggesting that lumican might have a potential to be used to modulate these processes.
Journal of Cancer Research and Clinical Oncology | 2015
Rong-Kun Li; Wen-Yi Zhao; Fang Fang; Chun Zhuang; Xiao-Xin Zhang; Xiao-Mei Yang; Shu-Heng Jiang; Fan-Zhi Kong; Lin Tu; Wen-Ming Zhang; Shengli Yang; Hui Cao; Zhi-Gang Zhang
AbstractBackground Lysyl oxidase-like 4 (LOXL4) has been found up-regulated in a variety of human malignancies, but its clinical significance and functional roles in gastric cancer (GC) remain unknown.MethodsLysyl oxidase-like 4 (LOXL4) expression level in tumor tissues and human GC cell lines was evaluated by quantitative real-time polymerase chain reaction, Western blotting and immunohistochemical analyses. Its clinical significance was inferred from the analysis of 379 tissue samples of patients with GC using tissue microarray. The roles of LOXL4 in cell proliferation, migration and invasion in vitro were analyzed by gene over-expression, RNA interference and recombinant protein. Effects of LOXL4 on regulation of focal adhesion kinase/Src kinase (FAK/Src) pathway were examined by Western blotting.ResultsLysyl oxidase-like 4 (LOXL4) was up-regulated in GC tissues relative to paired non-tumor tissues, and this over-expression was significantly associated with tumor size, depth of tumor invasion, lymph node metastasis, tumor-node-metastasis (TNM) stages and poorer overall survival. Over-expression of LOXL4 has promotive effects on GC cell proliferation, migration and invasion in vitro, consistent with this, LOXL4 knockdown has inhibitive effects on GC cell proliferation, migration and invasion. Furthermore, recombinant human LOXL4 protein also promoted GC cell proliferation and migration. Subsequent mechanistic studies showed that LOXL4 could activate FAK/Src pathway to enhance cell–extracellular matrix adhesion.ConclusionsTaken together, our data reveal that up-regulation of LOXL4 expression is a frequent event in GC progression, contributes to tumor cell proliferation and metastasis, and LOXL4 may be a potential independent prognostic marker and therapeutic target for GC.
Experimental Cell Research | 2014
Ling Lin; Xiao-Mei Yang; Jun Li; Yan-Li Zhang; Wenxin Qin; Zhi-Gang Zhang
Mammalian enabled (MENA), usually known as a direct regulator of microfilament polymerization and bundling, promotes metastasis in various cancers. Here we focus on the role of MENA in hepatocellular carcinoma (HCC) metastasis and the relevant mechanism from the view of RhoA activity regulation. By HCC tissue microarray analysis, we found that MENA expression was positively associated with satellite lesions (P<0.01) and vascular invasion (P<0.01). Cases with membrane reinforcement of MENA staining in HCC tissues had significantly higher rates of early recurrence in the intermediate MENA expression group. Knockdown of MENA significantly suppressed HCC cell migration and invasion in vitro, as well as their intrahepatic and distant metastasis in vivo. Knockdown of MENA also decreased filopodia and stress fibers in SMMC-7721 cells. Furthermore, a decrease of RhoA activity was detected by a pull-down assay in SMMC-7721-shMENA cells. The ROCK inhibitor, Y-27632, suppressed migration of both MENA knockdown SMMC-7721 cells and control cells, but diminished their difference. Thus, our findings suggest that MENA promotes HCC cell motility by activating RhoA.
Scientific Reports | 2015
Jian-Yu Yang; Shu-Heng Jiang; De-Jun Liu; Xiao-Mei Yang; Yan-Miao Huo; Jiao Li; Rong Hua; Zhi-Gang Zhang; Yong-Wei Sun
Liver kinase B1 (LKB1) has been identified as a critical modulator involved in cell proliferation and polarity. The purpose of the current study was to characterize the expression pattern of LKB1 and assess the clinical significance of LKB1 expression in pancreatic ductal adenocarcinoma (PDAC) patients. LKB1 mRNA expression which was analyzed in 32 PDAC lesions and matched non-tumor tissues, was downregulated in 50% (16/32) of PDAC lesions. Similar results were also obtained by analyzing three independent datasets from Oncomine. Protein expression of LKB1 was significantly reduced in 6 PDAC cell lines and downregulated in 31.3% (10/32) of PDAC lesions compared to matched non-tumorous tissues, as determined by Western blot analysis. Additionally, tissue microarray containing 205 PDAC specimens was evaluated for LKB1 expression by IHC and demonstrated that reduced expression of LKB1 in 17.6% (36/205) of PDAC tissues was significantly correlated with clinical stage, T classification, N classification, liver metastasis and vascular invasion. Importantly, Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of PDAC and found that LKB1 protein expression was one of the independent prognostic factors for overall survival of PDAC patients.