Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Min-Kyu Joo is active.

Publication


Featured researches published by Min-Kyu Joo.


ACS Applied Materials & Interfaces | 2016

Suppression of Interfacial Current Fluctuation in MoTe2 Transistors with Different Dielectrics

Hyunjin Ji; Min-Kyu Joo; Yoojoo Yun; Ji-Hoon Park; Gwanmu Lee; Byoung Hee Moon; Hojoon Yi; Dongseok Suh; Seong Chu Lim

For transition metal dichalcogenides, the fluctuation of the channel current due to charged impurities is attributed to a large surface area and a thickness of a few nanometers. To investigate current variance at the interface of transistors, we obtain the low-frequency (LF) noise features of MoTe2 multilayer field-effect transistors with different dielectric environments. The LF noise properties are analyzed using the combined carrier mobility and carrier number fluctuation model which is additionally parametrized with an interfacial Coulomb-scattering parameter (α) that varies as a function of the accumulated carrier density (Nacc) and the location of the active channel layer of MoTe2. Our model shows good agreement with the current power spectral density (PSD) of MoTe2 devices from a low to high current range and indicates that the parameter α exhibits a stronger dependence on Nacc with an exponent -γ of -1.18 to approximately -1.64 for MoTe2 devices, compared with -0.5 for Si devices. The raised Coulomb scattering of the carriers, particularly for a low-current regime, is considered to be caused by the unique traits of layered semiconductors such as interlayer coupling and the charge distribution strongly affected by the device structure under a gate bias, which completely change the charge screening effect in MoTe2 multilayer. Comprehensive static and LF noise analyses of MoTe2 devices with our combined model reveal that a chemical-vapor deposited h-BN monolayer underneath MoTe2 channel and the Al2O3 passivation layer have a dissimilar contribution to the reduction of current fluctuation. The three-fold enhanced carrier mobility due to the h-BN is from the weakened carrier scattering at the gate dielectric interface and the additional 30% increase in carrier mobility by Al2O3 passivation is due to the reduced interface traps.


ACS Applied Materials & Interfaces | 2017

Understanding Coulomb Scattering Mechanism in Monolayer MoS2 Channel in the Presence of h-BN Buffer Layer

Min-Kyu Joo; Byoung Hee Moon; Hyunjin Ji; Gang Hee Han; Hyun Soo Kim; Gwanmu Lee; Seong Chu Lim; Dongseok Suh; Young Hee Lee

As the thickness becomes thinner, the importance of Coulomb scattering in two-dimensional layered materials increases because of the close proximity between channel and interfacial layer and the reduced screening effects. The Coulomb scattering in the channel is usually obscured mainly by the Schottky barrier at the contact in the noise measurements. Here, we report low-temperature (T) noise measurements to understand the Coulomb scattering mechanism in the MoS2 channel in the presence of h-BN buffer layer on the silicon dioxide (SiO2) insulating layer. One essential measure in the noise analysis is the Coulomb scattering parameter (αSC) which is different for channel materials and electron excess doping concentrations. This was extracted exclusively from a 4-probe method by eliminating the Schottky contact effect. We found that the presence of h-BN on SiO2 provides the suppression of αSC twice, the reduction of interfacial traps density by 100 times, and the lowered Schottky barrier noise by 50 times compared to those on SiO2 at T = 25 K. These improvements enable us to successfully identify the main noise source in the channel, which is the trapping-detrapping process at gate dielectrics rather than the charged impurities localized at the channel, as confirmed by fitting the noise features to the carrier number and correlated mobility fluctuation model. Further, the reduction in contact noise at low temperature in our system is attributed to inhomogeneous distributed Schottky barrier height distribution in the metal-MoS2 contact region.


ACS Nano | 2016

Large-Scale Graphene on Hexagonal-BN Hall Elements: Prediction of Sensor Performance without Magnetic Field.

Min-Kyu Joo; Joonggyu Kim; Ji-Hoon Park; Van Luan Nguyen; Ki Kang Kim; Young Hee Lee; Dongseok Suh

A graphene Hall element (GHE) is an optimal system for a magnetic sensor because of its perfect two-dimensional (2-D) structure, high carrier mobility, and widely tunable carrier concentration. Even though several proof-of-concept devices have been proposed, manufacturing them by mechanical exfoliation of 2-D material or electron-beam lithography is of limited feasibility. Here, we demonstrate a high quality GHE array having a graphene on hexagonal-BN (h-BN) heterostructure, fabricated by photolithography and large-area 2-D materials grown by chemical vapor deposition techniques. A superior performance of GHE was achieved with the help of a bottom h-BN layer, and showed a maximum current-normalized sensitivity of 1986 V/AT, a minimum magnetic resolution of 0.5 mG/Hz(0.5) at f = 300 Hz, and an effective dynamic range larger than 74 dB. Furthermore, on the basis of a thorough understanding of the shift of charge neutrality point depending on various parameters, an analytical model that predicts the magnetic sensor operation of a GHE from its transconductance data without magnetic field is proposed, simplifying the evaluation of each GHE design. These results demonstrate the feasibility of this highly performing graphene device using large-scale manufacturing-friendly fabrication methods.


ACS Applied Materials & Interfaces | 2017

Junction-Structure-Dependent Schottky Barrier Inhomogeneity and Device Ideality of Monolayer MoS2 Field-Effect Transistors

Byoung Hee Moon; Gang Hee Han; Hyun Kim; Homin Choi; Jung Jun Bae; Jaesu Kim; Youngjo Jin; Hye Yun Jeong; Min-Kyu Joo; Young Hee Lee; Seong Chu Lim

Although monolayer transition metal dichalcogenides (TMDs) exhibit superior optical and electrical characteristics, their use in digital switching devices is limited by incomplete understanding of the metal contact. Comparative studies of Au top and edge contacts with monolayer MoS2 reveal a temperature-dependent ideality factor and Schottky barrier height (SBH). The latter originates from inhomogeneities in MoS2 caused by defects, charge puddles, and grain boundaries, which cause local variation in the work function at Au-MoS2 junctions and thus different activation temperatures for thermionic emission. However, the effect of inhomogeneities due to impurities on the SBH varies with the junction structure. The weak Au-MoS2 interaction in the top contact, which yields a higher SBH and ideality factor, is more affected by inhomogeneities than the strong interaction in the edge contact. Observed differences in the SBH and ideality factor in different junction structures clarify how the SBH and inhomogeneities can be controlled in devices containing TMD materials.


Applied Physics Letters | 2016

Strong Coulomb scattering effects on low frequency noise in monolayer WS2 field-effect transistors

Min-Kyu Joo; Yoojoo Yun; Seokjoon Yun; Young Hee Lee; Dongseok Suh

When atomically thin semiconducting transition metal dichalcogenides are used as a channel material, they are inevitably exposed to supporting substrates. This situation can lead to masking of intrinsic properties by undesired extrinsic doping and/or additional conductance fluctuations from the largely distributed Coulomb impurities at the interface between the channel and the substrate. Here, we report low-frequency noise characteristics in monolayer WS2 field-effect transistors on silicon/silicon-oxide substrate. To mitigate the effect of extrinsic low-frequency noise sources, a nitrogen annealing was carried out to provide better interface quality and to suppress the channel access resistance. The carrier number fluctuation and the correlated mobility fluctuation (CNF-CMF) model was better than the sole CNF one to explain our low-frequency noise data, because of the strong Coulomb scattering effect on the effective mobility caused by carrier trapping/detrapping at oxide traps. The temperature-dependent...


Nature Communications | 2017

Probing defect dynamics in monolayer MoS 2 via noise nanospectroscopy

Seung Hyun Song; Min-Kyu Joo; Michael Neumann; Hyun Kyu Kim; Young Hee Lee

Monolayer molybdenum disulfide (MoS2) has received intense interest as a strong candidate for next-generation electronics. However, the observed electrical properties of monolayer MoS2 exhibit several anomalies: samples universally exhibit unexpectedly low mobilities, n-type characteristics, and large contact resistances regardless of contact metal work function. These anomalies have been attributed to the presence of defects, but the mechanism behind this link has been elusive. Here we report the ionization dynamics of sulfur monovacancy defects in monolayer MoS2 probed via noise nanospectroscopy, realized by combining noise–current analysis with atomic force microscopy. Due to the nanoscale dimension of the in situ channel defined by the tip size, we probe a few monovacancy defects at a time. Monovacancy defects exhibit switching between three distinct ionization configurations, corresponding to charge states 0, −1, and −2. The most probable charge configurations are 0 and −1, providing a plausible mechanism to explain the observed anomalies of MoS2 monolayers.The intrinsic properties of atomically thin MoS2 are believed to be strongly affected by the presence of structural defects; however, the underlying physical mechanism of such link is not fully understood. Here, the authors combine noise-current analysis with atomic force microscopy to explore the relationship between point defects and the anomalous physical properties of MoS2 monolayers.


Applied Physics Letters | 2017

Thickness-dependent carrier mobility of ambipolar MoTe2: Interplay between interface trap and Coulomb scattering

Hyunjin Ji; Gwanmu Lee; Min-Kyu Joo; Yoojoo Yun; Hojoon Yi; Ji-Hoon Park; Dongseok Suh; Seong Chu Lim

The correlation between the channel thickness and the carrier mobility is investigated by conducting static and low frequency (LF) noise characterization for ambipolar carriers in multilayer MoTe2 transistors. For channel thicknesses in the range of 5–15 nm, both the low-field carrier mobility and the Coulomb-scattering-limited carrier mobility (μC) are maximal at a thickness of ∼10 nm. For LF noise, the interplay of interface trap density (NST), which was minimal at ∼10 nm, and the interfacial Coulomb scattering parameter (αSC), which decreased up to 10 nm and saturated above 10 nm, explained the mobility (μC) peaked near 10 nm by the carrier fluctuation and charge distribution.


ACS Applied Materials & Interfaces | 2017

Tunable Mobility in Double-Gated MoTe2 Field-Effect Transistor: Effect of Coulomb Screening and Trap Sites

Hyunjin Ji; Min-Kyu Joo; Hojoon Yi; Homin Choi; Hamza Zad Gul; Mohan Kumar Ghimire; Seong Chu Lim

There is a general consensus that the carrier mobility in a field-effect transistor (FET) made of semiconducting transition-metal dichalcogenides (s-TMDs) is severely degraded by the trapping/detrapping and Coulomb scattering of carriers by ionic charges in the gate oxides. Using a double-gated (DG) MoTe2 FET, we modulated and enhanced the carrier mobility by adjusting the top- and bottom-gate biases. The relevant mechanism for mobility tuning in this device was explored using static DC and low-frequency (LF) noise characterizations. In the investigations, LF-noise analysis revealed that for a strong back-gate bias the Coulomb scattering of carriers by ionized traps in the gate dielectrics is strongly screened by accumulation charges. This significantly reduces the electrostatic scattering of channel carriers by the interface trap sites, resulting in increased mobility. The reduction of the number of effective trap sites also depends on the gate bias, implying that owing to the gate bias, the carriers are shifted inside the channel. Thus, the number of active trap sites decreases as the carriers are repelled from the interface by the gate bias. The gate-controlled Coulomb-scattering parameter and the trap-site density provide new handles for improving the carrier mobility in TMDs, in a fundamentally different way from dielectric screening observed in previous studies.


ACS Applied Materials & Interfaces | 2017

Ultrastretchable Analog/Digital Signal Transmission Line with Carbon Nanotube Sheets

Yourack Lee; Min-Kyu Joo; Viet Thong Le; Raquel Ovalle-Robles; Xavier Lepró; Marcio Dias Lima; Daniel G. Suh; Han Young Yu; Young Hee Lee; Dongseok Suh

Stretchable conductors can be used in various applications depending on their own characteristics. Here, we demonstrate simple and robust elastomeric conductors that are optimized for stretchable electrical signal transmission line. They can withstand strains up to 600% without any substantial change in their resistance (≤10% as is and ≤1% with passivation), and exhibit suppressed charge fluctuations in the medium. The inherent elasticity of a polymeric rubber and the high conductivity of flexible, highly oriented carbon nanotube sheets were combined synergistically, without losing both properties. The nanoscopic strong adhesion between aligned carbon nanotube arrays and strained elastomeric polymers induces conductive wavy folds with microscopic bending of radii on the scale of a few micrometers. Such features enable practical applications such as in elastomeric length-changeable electrical digital and analog signal transmission lines at above MHz frequencies. In addition to reporting basic direct current, alternating current, and noise characterizations of the elastomeric conductors, various examples as a stretchable signal transmission line up to 600% strains are presented by confirming the capability of transmitting audio and video signals, as well as low-frequency medical signals without information distortion.


Nanotechnology | 2018

Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application

Mingxing Piao; Jin Chu; Xiao Wang; Yao Chi; Heng Zhang; Chaolong Li; Haofei Shi; Min-Kyu Joo

Two-dimensional materials have gained great attention as a promising thermoelectric (TE) material due to their unique density of state with confined electrons and holes. Here, we synthesized 1T phase tungsten disulfide (WS2) nanosheets with high TE performance via the hydrothermal method. Flexible WS2 nanosheets restacked thin films were fabricated by employing the vacuum filtration technique. The measured electrical conductivity was 45 S cm-1 with a Seebeck coefficient of +30 μV K-1 at room temperature, indicating a p-type characteristic. Furthermore, the TE performance could be further improved by thermal annealing treatment. It was found the electrical conductivity could be enhanced 2.7 times without sacrificing the Seebeck coefficient, resulting in the power factor of 9.40 μW m-1 K-2. Moreover, such 1T phase WS2 nanosheets possess high phase stability since the TE properties maintained constant at least half one year in the air atmosphere. Notably, other kinds of 1T phase transitional metal dichalcogenides (TMDCs) with excellent TE performance also could be imitated by using the procedure in this work. Finally, we believe a variety of materials based on 1T phase TMDCs nanosheets have great potential as candidate for future TE applications.

Collaboration


Dive into the Min-Kyu Joo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongseok Suh

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gwanmu Lee

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Yoojoo Yun

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Hee Han

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Joonggyu Kim

Sungkyunkwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge