Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Min Lv is active.

Publication


Featured researches published by Min Lv.


Journal of Bacteriology | 2012

Lactate Utilization Is Regulated by the FadR-Type Regulator LldR in Pseudomonas aeruginosa

Chao Gao; Chunhui Hu; Zhaojuan Zheng; Cuiqing Ma; Tianyi Jiang; Peipei Dou; Wen Zhang; Bin Che; Yujiao Wang; Min Lv; Ping Xu

NAD-independent L-lactate dehydrogenase (l-iLDH) and NAD-independent D-lactate dehydrogenase (D-iLDH) activities are induced coordinately by either enantiomer of lactate in Pseudomonas strains. Inspection of the genomic sequences of different Pseudomonas strains revealed that the lldPDE operon comprises 3 genes, lldP (encoding a lactate permease), lldD (encoding an L-iLDH), and lldE (encoding a D-iLDH). Cotranscription of lldP, lldD, and lldE in Pseudomonas aeruginosa strain XMG starts with the base, C, that is located 138 bp upstream of the lldP ATG start codon. The lldPDE operon is located adjacent to lldR (encoding an FadR-type regulator, LldR). The gel mobility shift assays revealed that the purified His-tagged LldR binds to the upstream region of lldP. An XMG mutant strain that constitutively expresses D-iLDH and L-iLDH was found to contain a mutation in lldR that leads to an Ile23-to-serine substitution in the LldR protein. The mutated protein, LldR(M), lost its DNA-binding activity. A motif with a hyphenated dyad symmetry (TGGTCTTACCA) was identified as essential for the binding of LldR to the upstream region of lldP by using site-directed mutagenesis. L-Lactate and D-lactate interfered with the DNA-binding activity of LldR. Thus, L-iLDH and D-iLDH were expressed when the operon was induced in the presence of L-lactate or D-lactate.


Scientific Reports | 2015

Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase.

Pan Liu; Haiwei Zhang; Min Lv; Mandong Hu; Zhuyin Li; Chengyong Gao; Ping Xu; Cuiqing Ma

5-Aminovalerate is a potential C5 platform chemical for synthesis of valerolactam, 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. It is a metabolite of l-lysine catabolism through the aminovalerate pathway in Pseudomonas putida. l-Lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) play key roles in the biotransformation of l-lysine into 5-aminovalerate. Here, DavB and DavA of P. putida KT2440 were expressed, purified, and coupled for the production of 5-aminovalerate from l-lysine. Under optimal conditions, 20.8 g/L 5-aminovalerate was produced from 30 g/L l-lysine in 12 h. Because l-lysine is an industrial fermentation product, the two-enzyme coupled system presents a promising alternative for the production of 5-aminovalerate.


Scientific Reports | 2015

Production of diacetyl by metabolically engineered Enterobacter cloacae

Lijie Zhang; Yingxin Zhang; Qiuyuan Liu; Liying Meng; Mandong Hu; Min Lv; Kun Li; Chao Gao; Ping Xu; Cuiqing Ma

Diacetyl, a high value product that can be extensively used as a food ingredient, could be produced from the non-enzymatic oxidative decarboxylation of α-acetolactate during 2,3-butanediol fermentation. In this study, the 2,3-butanediol biosynthetic pathway in Enterobacter cloacae subsp. dissolvens strain SDM, a good candidate for microbial 2,3-butanediol production, was reconstructed for diacetyl production. To enhance the accumulation of the precursor of diacetyl, the α-acetolactate decarboxylase encoding gene (budA) was knocked out in strain SDM. Subsequently, the two diacetyl reductases DR-I (gdh) and DR-II (budC) encoding genes were inactivated in strain SDM individually or in combination to decrease the reduction of diacetyl. Although the engineered strain E. cloacae SDM (ΔbudAΔbudC) was found to have a good ability for diacetyl production, more α-acetolactate than diacetyl was produced simultaneously. In order to enhance the nonenzymatic oxidative decarboxylation of α-acetolactate to diacetyl, 20 mM Fe3+ was added to the fermentation broth at the optimal time. In the end, by using the metabolically engineered strain E. cloacae SDM (ΔbudAΔbudC), diacetyl at a concentration of 1.45 g/L was obtained with a high productivity (0.13 g/(L·h)). The method developed here may be a promising process for biotechnological production of diacetyl.


Journal of Bacteriology | 2012

Genome Sequence of the Lactate-Utilizing Pseudomonas aeruginosa Strain XMG

Chao Gao; Chunhui Hu; Cuiqing Ma; Fei Su; Hao Yu; Tianyi Jiang; Peipei Dou; Yujiao Wang; Tong Qin; Min Lv; Ping Xu

Pseudomonas aeruginosa XMG, isolated from soil, utilizes lactate. Here we present a 6.45-Mb assembly of its genome sequence. Besides the lactate utilization mechanism of the strain, the genome sequence may also provide other useful information related to P. aeruginosa, such as identifying genes involved in virulence, drug resistance, and aromatic catabolism.


Scientific Reports | 2015

Discovery of Some Piperine-Based Phenylsulfonylhydrazone Derivatives as Potent Botanically Narcotic Agents.

Huan Qu; Min Lv; Xiang Yu; Xihong Lian; Hui Xu

By structural modification of piperine, some piperine-based phenylsulfonylhydrazone derivatives exhibited an unprecedented and potent narcotic activity against the oriental armyworm, Mythimna separata (Walker). The ND50 values of compounds 6c and 6e against the third-instar larvae of M. separata, which were more potent than those of wilfortrine and wilforgine, were 0.0074 μmol (after 3.5 h), and 0.0075 μmol (after 7 h) per larvae, respectively. By transmission electron microscope, it demonstrated that mitochondria were vacuolated and swollen in the ganglion cell of M. separata after treatment with 6c. More importantly, 6c selectively displayed the inhibition activity on acetylcholine esterase (AchE) of M. separata. This work paved the way for further studying the insecticidal mechanism of 6c as a new and promising botanical narcotic agent.


Scientific Reports | 2015

High Maternal Serum Estradiol Levels Induce Dyslipidemia in Human Newborns via a Hepatic HMGCR Estrogen Response Element

Ye Meng; Ping-Ping Lv; Guo-Lian Ding; Tian-Tian Yu; Ye Liu; Yan Shen; Xiao-Ling Hu; Xian-Hua Lin; Shen Tian; Min Lv; Yang Song; Meng-Xi Guo; Zhang-Hong Ke; Hong Xu; Jian-Zhong Sheng; Fengtao Shi; He-Feng Huang

While the intrauterine environment is essential for the health of offspring, the impact of high maternal serum estradiol (E2) on lipid metabolism in offspring and the mechanisms are unknown. We found that ovarian stimulation (OS) could result in high E2 levels in women throughout pregnancy. Strikingly, their newborns showed elevated total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels that were positively related with E2 in newborns. In vitro, E2 dose-dependently stimulated TC and LDL-C secretion, and increased expression of the cholesterol synthesis rate-limiting enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) in HepG2 cells and mouse fetal hepatocytes. In vivo, high maternal E2 was detected and fetal livers also showed significantly higher HMGCR expression in an OS mouse model. Notably, an estrogen response element (ERE) was identified in the HMGCR promoter, indicating that high maternal serum E2 could up-regulate HMGCR expression in fetal hepatocytes via an ERE that in turn induces elevated levels of TC and LDL-C in offspring. Conclusion: OS can induce a high maternal E2 environment, which up-regulates HMGCR expression in fetal hepatocytes via an ERE in the promoter, and induces elevated levels of TC and LDL-C in newborns that may be related to increased risk of metabolic disease in adulthood.


Journal of Bacteriology | 2015

NAD-Independent l-Lactate Dehydrogenase Required for l-Lactate Utilization in Pseudomonas stutzeri A1501

Chao Gao; Yujiao Wang; Yingxin Zhang; Min Lv; Peipei Dou; Ping Xu; Cuiqing Ma

UNLABELLED NAD-independent L-lactate dehydrogenases (l-iLDHs) play important roles in L-lactate utilization of different organisms. All of the previously reported L-iLDHs were flavoproteins that catalyze the oxidation of L-lactate by the flavin mononucleotide (FMN)-dependent mechanism. Based on comparative genomic analysis, a gene cluster with three genes (lldA, lldB, and lldC) encoding a novel type of L-iLDH was identified in Pseudomonas stutzeri A1501. When the gene cluster was expressed in Escherichia coli, distinctive L-iLDH activity was detected. The expressed L-iLDH was purified by ammonium sulfate precipitation, ion-exchange chromatography, and affinity chromatography. SDS-PAGE and successive matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the purified L-iLDH indicated that it is a complex of LldA, LldB, and LldC (encoded by lldA, lldB, and lldC, respectively). Purified L-iLDH (LldABC) is a dimer of three subunits (LldA, LldB, and LldC), and the ratio between LldA, LldB, and LldC is 1:1:1. Different from the FMN-containing L-iLDH, absorption spectra and elemental analysis suggested that LldABC might use the iron-sulfur cluster for the L-lactate oxidation. LldABC has narrow substrate specificity, and only L-lactate and DL-2-hydrobutyrate were rapidly oxidized. Mg(2+) could activate L-iLDH activity effectively (6.6-fold). Steady-state kinetics indicated a ping-pong mechanism of LldABC for the L-lactate oxidation. Based on the gene knockout results, LldABC was confirmed to be required for the L-lactate metabolism of P. stutzeri A1501. LldABC is the first purified and characterized L-iLDH with different subunits that uses the iron-sulfur cluster as the cofactor. IMPORTANCE Providing new insights into the diversity of microbial lactate utilization could assist in the production of valuable chemicals and understanding microbial pathogenesis. An NAD-independent L-lactate dehydrogenase (L-iLDH) encoded by the gene cluster lldABC is indispensable for the L-lactate metabolism in Pseudomonas stutzeri A1501. This novel type of enzyme was purified and characterized in this study. Different from the well-characterized FMN-containing L-iLDH in other microbes, LldABC in P. stutzeri A1501 is a dimer of three subunits (LldA, LldB, and LldC) and uses the iron-sulfur cluster as a cofactor.


PLOS ONE | 2014

Efficient Production of (R)-2-Hydroxy-4-Phenylbutyric Acid by Using a Coupled Reconstructed d-Lactate Dehydrogenase and Formate Dehydrogenase System

Binbin Sheng; Zhaojuan Zheng; Min Lv; Haiwei Zhang; Tong Qin; Chengyong Gao; Cuiqing Ma; Ping Xu

Background (R)-2-Hydroxy-4-phenylbutyric acid [(R)-HPBA] is a key precursor for the production of angiotensin-converting enzyme inhibitors. However, the product yield and concentration of reported (R)-HPBA synthetic processes remain unsatisfactory. Methodology/Principal Findings The Y52L/F299Y mutant of NAD-dependent d-lactate dehydrogenase (d-nLDH) in Lactobacillus bulgaricus ATCC 11842 was found to have high bio-reduction activity toward 2-oxo-4-phenylbutyric acid (OPBA). The mutant d-nLDHY52L/F299Y was then coexpressed with formate dehydrogenase in Escherichia coli BL21 (DE3) to construct a novel biocatalyst E. coli DF. Thus, a novel bio-reduction process utilizing whole cells of E. coli DF as the biocatalyst and formate as the co-substrate for cofactor regeneration was developed for the production of (R)-HPBA from OPBA. The biocatalysis conditions were then optimized. Conclusions/Significance Under the optimum conditions, 73.4 mM OPBA was reduced to 71.8 mM (R)-HPBA in 90 min. Given its high product enantiomeric excess (>99%) and productivity (47.9 mM h−1), the constructed coupling biocatalysis system is a promising alternative for (R)-HPBA production.


Scientific Reports | 2015

Reconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocatalyst for l -2-hydroxy-carboxylate production

Yujiao Wang; Min Lv; Yingxin Zhang; Xieyue Xiao; Tianyi Jiang; Wen Zhang; Chunhui Hu; Chao Gao; Cuiqing Ma; Ping Xu

As an important method for building blocks synthesis, whole cell biocatalysis is hindered by some shortcomings such as unpredictability of reactions, utilization of opportunistic pathogen, and side reactions. Due to its biological and extensively studied genetic background, Pseudomonas putida KT2440 is viewed as a promising host for construction of efficient biocatalysts. After analysis and reconstruction of the lactate utilization system in the P. putida strain, a novel biocatalyst that only exhibited NAD-independent d-lactate dehydrogenase activity was prepared and used in l-2-hydroxy-carboxylates production. Since the side reaction catalyzed by the NAD-independent l-lactate dehydrogenase was eliminated in whole cells of recombinant P. putida KT2440, two important l-2-hydroxy-carboxylates (l-lactate and l-2-hydroxybutyrate) were produced in high yield and high optical purity by kinetic resolution of racemic 2-hydroxy carboxylic acids. The results highlight the promise in biocatalysis by the biotechnologically important organism P. putida KT2440 through genomic analysis and recombination.


PLOS ONE | 2016

Molecular Characterization of a Lysozyme Gene and Its Altered Expression Profile in Crowded Beet Webworm (Loxostege sticticalis).

Hailong Kong; Min Lv; Nian Mao; Cheng Wang; Yunxia Cheng; Lei Zhang; Xingfu Jiang; Lizhi Luo

There is growing evidence that insects living in high-density populations exhibit an increase in immune function to counter a higher risk of disease. This phenomenon, known as density-dependent prophylaxis, has been experimentally tested in a number of insect species. Although density-dependent prophylaxis is especially prevalent in insects exhibiting density-dependent phase polyphenism, the molecular mechanism remains unclear. Our previous study demonstrated that the antibacterial activity of lysozyme is important for this process in the beet webworm Loxostege sticticalis. In this study, a lysozyme cDNA from L. sticticalis was cloned and characterized. The full-length cDNA is 1078 bp long and contains an open reading frame of 426 bp that encodes 142 amino acids. The deduced protein possesses structural characteristics of a typical c-type lysozyme and clusters with c-type lysozymes from other Lepidoptera. LsLysozyme was found to be expressed throughout all developmental stages, showing the highest level in pupae. LsLysozyme was also highly expressed in the midgut and fat body. Elevated LsLysozyme expression was observed in L. sticticalis larvae infected by Beauveria bassiana and in larvae reared under crowding conditions. In addition, the expression level of LsLysozyme in infected larvae reared at a density of 10 larvae per jar was significantly higher compared to those reared at a density of l or 30 larvae per jar. These results suggest that larval crowding affects the gene expression profile of this lysozyme. This study provides additional insight into the expression of an immune-associated lysozyme gene and helps us to better understand the immune response of L. sticticalis under crowding conditions.

Collaboration


Dive into the Min Lv's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Xu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge