Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Min Min Zhang is active.

Publication


Featured researches published by Min Min Zhang.


Journal of Biological Chemistry | 2007

Structure/Function Characterization of μ-Conotoxin KIIIA, an Analgesic, Nearly Irreversible Blocker of Mammalian Neuronal Sodium Channels

Min Min Zhang; Brad R. Green; Philip Catlin; Brian Fiedler; Layla Azam; Ashley Chadwick; Heinrich Terlau; Jeff R. McArthur; Robert J. French; Josef Gulyas; Jean Rivier; Brian J. Smith; Raymond S. Norton; Baldomero M. Olivera; Doju Yoshikami; Grzegorz Bulaj

Peptide neurotoxins from cone snails continue to supply compounds with therapeutic potential. Although several analgesic conotoxins have already reached human clinical trials, a continuing need exists for the discovery and development of novel non-opioid analgesics, such as subtype-selective sodium channel blockers. μ-Conotoxin KIIIA is representative of μ-conopeptides previously characterized as inhibitors of tetrodotoxin (TTX)-resistant sodium channels in amphibian dorsal root ganglion neurons. Here, we show that KIIIA has potent analgesic activity in the mouse pain model. Surprisingly, KIIIA was found to block most (>80%) of the TTX-sensitive, but only ∼20% of the TTX-resistant, sodium current in mouse dorsal root ganglion neurons. KIIIA was tested on cloned mammalian channels expressed in Xenopus oocytes. Both NaV1.2 and NaV1.6 were strongly blocked; within experimental wash times of 40–60 min, block was reversed very little for NaV1.2 and only partially for NaV1.6. Other isoforms were blocked reversibly: NaV1.3 (IC50 8 μm), NaV1.5 (IC50 284 μm), and NaV1.4 (IC50 80 nm). “Alanine-walk” and related analogs were synthesized and tested against both NaV1.2 and NaV1.4; replacement of Trp-8 resulted in reversible block of NaV1.2, whereas replacement of Lys-7, Trp-8, or Asp-11 yielded a more profound effect on the block of NaV1.4 than of NaV1.2. Taken together, these data suggest that KIIIA is an effective tool to study structure and function of NaV1.2 and that further engineering of μ-conopeptides belonging to the KIIIA group may provide subtype-selective pharmacological compounds for mammalian neuronal sodium channels and potential therapeutics for the treatment of pain.


Proceedings of the National Academy of Sciences of the United States of America | 2011

μ-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve

Michael J. Wilson; Doju Yoshikami; Layla Azam; Joanna Gajewiak; Baldomero M. Olivera; Grzegorz Bulaj; Min Min Zhang

Voltage-gated sodium channels (VGSCs) are important for action potentials. There are seven major isoforms of the pore-forming and gate-bearing α-subunit (NaV1) of VGSCs in mammalian neurons, and a given neuron can express more than one isoform. Five of the neuronal isoforms, NaV1.1, 1.2, 1.3, 1.6, and 1.7, are exquisitely sensitive to tetrodotoxin (TTX), and a functional differentiation of these presents a serious challenge. Here, we examined a panel of 11 μ-conopeptides for their ability to block rodent NaV1.1 through 1.8 expressed in Xenopus oocytes. Although none blocked NaV1.8, a TTX-resistant isoform, the resulting “activity matrix” revealed that the panel could readily discriminate between the members of all pair-wise combinations of the tested isoforms. To examine the identities of endogenous VGSCs, a subset of the panel was tested on A- and C-compound action potentials recorded from isolated preparations of rat sciatic nerve. The results show that the major subtypes in the corresponding A- and C-fibers were NaV1.6 and 1.7, respectively. Ruled out as major players in both fiber types were NaV1.1, 1.2, and 1.3. These results are consistent with immunohistochemical findings of others. To our awareness this is the first report describing a qualitative pharmacological survey of TTX-sensitive NaV1 isoforms responsible for propagating action potentials in peripheral nerve. The panel of μ-conopeptides should be useful in identifying the functional contributions of NaV1 isoforms in other preparations.


Biochemistry | 2009

Structure of the analgesic μ-conotoxin KIIIA and effects on the structure and function of disulfide deletion

Keith K. Khoo; Zhi Ping Feng; Brian J. Smith; Min Min Zhang; Doju Yoshikami; Baldomero M. Olivera; Grzegorz Bulaj; Raymond S. Norton

Mu-conotoxin mu-KIIIA, from Conus kinoshitai, blocks mammalian neuronal voltage-gated sodium channels (VGSCs) and is a potent analgesic following systemic administration in mice. We have determined its solution structure using NMR spectroscopy. Key residues identified previously as being important for activity against VGSCs (Lys7, Trp8, Arg10, Asp11, His12, and Arg14) all reside on an alpha-helix with the exception of Arg14. To further probe structure-activity relationships of this toxin against VGSC subtypes, we have characterized the analogue mu-KIIIA[C1A,C9A], in which the Cys residues involved in one of the three disulfides in mu-KIIIA were replaced with Ala. Its structure is quite similar to that of mu-KIIIA, indicating that the Cys1-Cys9 disulfide bond could be removed without any significant distortion of the alpha-helix bearing the key residues. Consistent with this, mu-KIIIA[C1A,C9A] retained activity against VGSCs, with its rank order of potency being essentially the same as that of mu-KIIIA, namely, Na(V)1.2 > Na(V)1.4 > Na(V)1.7 >or= Na(V)1.1 > Na(V)1.3 > Na(V)1.5. Kinetics of block were obtained for Na(V)1.2, Na(V)1.4, and Na(V)1.7, and in each case, both k(on) and k(off) values of mu-KIIIA[C1A,C9A] were larger than those of mu-KIIIA. Our results show that the key residues for VGSC binding lie mostly on an alpha-helix and that the first disulfide bond can be removed without significantly affecting the structure of this helix, although the modification accelerates the on and off rates of the peptide against all tested VGSC subtypes. These findings lay the groundwork for the design of minimized peptides and helical mimetics as novel analgesics.


Angewandte Chemie | 2009

Integrated oxidative folding of cysteine/selenocysteine containing peptides: improving chemical synthesis of conotoxins.

Aleksandra Walewska; Min Min Zhang; Jack J. Skalicky; Doju Yoshikami; Baldomero M. Olivera; Grzegorz Bulaj

Building bridges: The use of diselenide and selectively ((15)N/(13)C)-labeled disulfide bridges is combined to give improvements in oxidative folding and disulfide mapping. Conotoxin analogues, each with a pair of selenocysteines (Sec) and labeled cysteines (see scheme, red), exhibited significantly improved folding and the labeled cysteines allow correctly folded species to be rapidly identified by NMR spectroscopy.


Biochemistry | 2008

Structure, dynamics and selectivity of the sodium channel blocker mu-conotoxin SIIIA

Shenggen Yao; Min Min Zhang; Doju Yoshikami; Layla Azam; Baldomero M. Olivera; Grzegorz Bulaj; Raymond S. Norton

mu-SIIIA, a novel mu-conotoxin from Conus striatus, appeared to be a selective blocker of tetrodotoxin-resistant sodium channels in frog preparations. It also exhibited potent analgesic activity in mice, although its selectivity profile against mammalian sodium channels remains unknown. We have determined the structure of mu-SIIIA in aqueous solution and characterized its backbone dynamics by NMR and its functional properties electrophysiologically. Consistent with the absence of hydroxyprolines, mu-SIIIA adopts a single conformation with all peptide bonds in the trans conformation. The C-terminal region contains a well-defined helix encompassing residues 11-16, while residues 3-5 in the N-terminal region form a helix-like turn resembling 3 10-helix. The Trp12 and His16 side chains are close together, as in the related conotoxin mu-SmIIIA, but Asn2 is more distant. Dynamics measurements show that the N-terminus and Ser9 have larger-magnitude motions on the subnanosecond time scale, while the C-terminus is more rigid. Cys4, Trp12, and Cys13 undergo significant conformational exchange on microsecond to millisecond time scales. mu-SIIIA is a potent, nearly irreversible blocker of Na V1.2 but also blocks Na V1.4 and Na V1.6 with submicromolar potency. The selectivity profile of mu-SIIIA, including poor activity against the cardiac sodium channel, Na V1.5, is similar to that of the closely related mu-KIIIA, suggesting that the C-terminal regions of both are critical for blocking neuronal Na V1.2. The structural and functional characterization described in this paper of an analgesic mu-conotoxin that targets neuronal subtypes of mammalian sodium channels provides a basis for the design of novel analogues with an improved selectivity profile.


Biochemical Pharmacology | 2008

Specificity, affinity and efficacy of iota-conotoxin RXIA, an agonist of voltage-gated sodium channels NaV1.2, 1.6 and 1.7

Brian Fiedler; Min Min Zhang; Oga Buczek; Layla Azam; Grzegorz Bulaj; Raymond S. Norton; Baldomero M. Olivera; Doju Yoshikami

The excitotoxic conopeptide iota-RXIA induces repetitive action potentials in frog motor axons and seizures upon intracranial injection into mice. We recently discovered that iota-RXIA shifts the voltage-dependence of activation of voltage-gated sodium channel Na(V)1.6 to a more hyperpolarized level. Here, we performed voltage-clamp experiments to examine its activity against rodent Na(V)1.1 through Na(V)1.7 co-expressed with the beta1 subunit in Xenopus oocytes and Na(V)1.8 in dissociated mouse DRG neurons. The order of sensitivity to iota-RXIA was Na(V)1.6 > 1.2 > 1.7, and the remaining subtypes were insensitive. The time course of iota-RXIA-activity on Na(V)1.6 during exposure to different peptide concentrations were well fit by single-exponential curves that provided k(obs). The plot of k(obs)versus [iota-RXIA] was linear, consistent with a bimolecular reaction with a K(d) of approximately 3 microM, close to the steady-state EC(50) of approximately 2 microM. iota-RXIA has an unusual residue, D-Phe, and the analog with an L-Phe instead, iota-RXIA[L-Phe44], had a two-fold lower affinity and two-fold faster off-rate than iota-RXIA on Na(V)1.6 and furthermore was inactive on Na(V)1.2. iota-RXIA induced repetitive action potentials in mouse sciatic nerve with conduction velocities of both A- and C-fibers, consistent with the presence of Na(V)1.6 at nodes of Ranvier as well as in unmyelinated axons. Sixteen peptides homologous to iota-RXIA have been identified from a single species of Conus, so these peptides represent a rich family of novel sodium channel-targeting ligands.


ChemMedChem | 2009

Structurally Minimized μ-Conotoxin Analogues as Sodium Channel Blockers: Implications for Designing Conopeptide-Based Therapeutics

Min Min Zhang; Aleksandra Walewska; Paweł Gruszczyński; Charles R. Robertson; Thomas E. Cheatham; Doju Yoshikami; Baldomero M. Olivera; Grzegorz Bulaj

Transforming the neuroactive toxins of cone snails into small‐size compounds poses a challenge due to the presence of multiple disulfide bridges. Herein we describe our successful efforts in minimizing the size of μ‐conotoxin while retaining its biological activity.


Channels | 2009

Synergistic and antagonistic interactions between tetrodotoxin and mu-conotoxin in blocking voltage-gated sodium channels.

Min Min Zhang; Jeffrey R. McArthur; Layla Azam; Grzegorz Bulaj; Baldomero M. Olivera; Robert J. French; Doju Yoshikami

Tetrodotoxin (TTX) is the quintessential ligand of voltage-gated sodium channels (NaVs). Like TTX, μ-conotoxin peptides are pore blockers, and both toxins have helped to define the properties of neurotoxin receptor Site 1 of NaVs. Here, we report unexpected results showing that the recently discovered μ-conotoxin KIIIA and TTX can simultaneously bind to Site 1 and act in concert. Results with saturating concentrations of peptide applied to voltage-clamped Xenopus oocytes expressing brain NaV1.2, and single-channel recordings from brain channels in lipid bilayers, show that KIIIA or its analog, KIIIA[K7A], block partially, with a residual current that can be completely blocked by TTX. In addition, the kinetics of block by TTX and peptide are each affected by the prior presence of the other toxin. For example, bound peptide slows subsequent binding of TTX (an antagonistic interaction) and slows TTX dissociation when both toxins are bound (a synergistic effect on block). The overall functional consequence resulting from the combined action of the toxins depends on the quantitative balance between these opposing actions. The results lead us to postulate that in the bi-liganded NaV complex, TTX is bound between the peptide and the selectivity filter. These observations refine our view of Site 1 and open new possibilities in NaV pharmacology.


Journal of Pharmacology and Experimental Therapeutics | 2011

NaVβ subunits modulate the inhibition of NaV1.8 by the analgesic gating modifier μO-conotoxin MrVIB

Michael J. Wilson; Min Min Zhang; Layla Azam; Baldomero M. Olivera; Grzegorz Bulaj; Doju Yoshikami

Voltage-gated sodium channels (VGSCs) consist of a pore-forming α-subunit and regulatory β-subunits. Several families of neuroactive peptides of Conus snails target VGSCs, including μO-conotoxins and μ-conotoxins. Unlike μ-conotoxins and the guanidinium alkaloid saxitoxin (STX), which are pore blockers, μO-conotoxins MrVIA and MrVIB inhibit VGSCs by modifying channel gating. μO-MrVIA/B can block NaV1.8 (a tetrodotoxin-resistant isoform of VGSCs) and have analgesic properties. The effect of NaVβ-subunit coexpression on susceptibility to block by μO-MrVIA/B and STX has, until now, not been reported. Here, we show that β1-, β2-, β3-, and β4-subunits, when individually coexpressed with NaV1.8 in Xenopus laevis oocytes, increased the kon of the block produced by μO-MrVIB (by 3-, 32-, 2-, and 7-fold, respectively) and modestly decreased the apparent koff. Strong depolarizing prepulses markedly accelerated MrVIB washout with rates dependent on β-subunit coexpression. Thus, coexpression of β-subunits with NaV1.8 can strongly influence the affinity of the conopeptide for the channel. This observation is of particular interest because β-subunit expression can be dynamic, e.g., β2-expression is up-regulated after nerve injury (J Neurosci, 25:10970–10980, 2005); therefore, the effectiveness of a μO-conotoxin as a channel blocker could be enhanced by the conditions that may call for its use therapeutically. In contrast to MrVIBs action, the STX-induced block of NaV1.8 was only marginally, if at all, affected by coexpression of any of the β-subunits. Our results raise the possibility that μO-conotoxins and perhaps other gating modifiers may provide a means to functionally assess the β-subunit composition of VGSC complexes in neurons.


British Journal of Pharmacology | 2013

Co-expression of NaVβ subunits alters the kinetics of inhibition of voltage-gated sodium channels by pore-blocking μ-conotoxins

Min Min Zhang; Michael J. Wilson; Layla Azam; Joanna Gajewiak; Jean Rivier; Grzegorz Bulaj; Baldomero M. Olivera; Doju Yoshikami

Voltage‐gated sodium channels (VGSCs) are assembled from two classes of subunits, a pore‐bearing α‐subunit (NaV1) and one or two accessory β‐subunits (NaVβs). Neurons in mammals can express one or more of seven isoforms of NaV1 and one or more of four isoforms of NaVβ. The peptide μ‐conotoxins, like the guanidinium alkaloids tetrodotoxin (TTX) and saxitoxin (STX), inhibit VGSCs by blocking the pore in NaV1. Hitherto, the effects of NaVβ‐subunit co‐expression on the activity of these toxins have not been comprehensively assessed.

Collaboration


Dive into the Min Min Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Rivier

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge