Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Min Qiao is active.

Publication


Featured researches published by Min Qiao.


Genes and Diseases | 2014

Bone Morphogenetic Protein (BMP) signaling in development and human diseases.

Richard N. Wang; Jordan Green; Zhongliang Wang; Youlin Deng; Min Qiao; Michael Peabody; Qian Zhang; Jixing Ye; Zhengjian Yan; Sahitya Denduluri; Olumuyiwa Idowu; Melissa Li; Christine Shen; Alan Hu; Rex C. Haydon; Richard W. Kang; James M. Mok; Michael J. Lee; Hue L. Luu; Lewis L. Shi

Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling.


PLOS ONE | 2014

Adenovirus-mediated efficient gene transfer into cultured three-dimensional organoids.

Ning Wang; Hongyu Zhang; Bing-Qiang Zhang; Wei Liu; Zhonglin Zhang; Min Qiao; Hongmei Zhang; Fang Deng; Ningning Wu; Xian Chen; Sheng Wen; Junhui Zhang; Zhan Liao; Qian Zhang; Zhengjian Yan; Liangjun Yin; Jixing Ye; Youlin Deng; Hue H. Luu; Rex C. Haydon; Houjie Liang; Tong-Chuan He

Three-dimensional organoids have been recently established from various tissue-specific progenitors (such as intestinal stem cells), induced pluripotent stem cells, or embryonic stem cells. These cultured self-sustaining stem cell–based organoids may become valuable systems to study the roles of tissue-specific stem cells in tissue genesis and disease development. It is thus conceivable that effective genetic manipulations in such organoids may allow us to reconstruct disease processes and/or develop novel therapeutics. Recombinant adenoviruses are one of the most commonly used viral vectors for in vitro and in vivo gene deliveries. In this study, we investigate if adenoviruses can be used to effectively deliver transgenes into the cultured “mini-gut” organoids derived from intestinal stem cells. Using adenoviral vectors that express fluorescent proteins, we demonstrate that adenoviruses can effectively deliver transgenes into the cultured 3-D “mini-gut” organoids. The transgene expression can last at least 10 days in the cultured organoids. As a proof-of-principle experiment, we demonstrate that adenovirus-mediated noggin expression effectively support the survival and self-renewal of mini-gut organoids, while adenovirus-mediated expression of BMP4 inhibits the self-sustainability and proliferation of the organoids. Thus, our results strongly suggest that adenovirus vectors can be explored as effective gene delivery vehicles to introduce genetic manipulations in 3-D organoids.


PLOS ONE | 2014

The piggyBac Transposon-Mediated Expression of SV40 T Antigen Efficiently Immortalizes Mouse Embryonic Fibroblasts (MEFs)

Ning Wang; Wenwen Zhang; Jing Cui; Hongmei Zhang; Xiang Chen; Ruidong Li; Ningning Wu; Xian Chen; Sheng Wen; Junhui Zhang; Liangjun Yin; Fang Deng; Zhan Liao; Zhonglin Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Jixing Ye; Youlin Deng; Zhongliang Wang; Min Qiao; Hue H. Luu; Rex C. Haydon; Lewis L. Shi; Houjie Liang; Tong-Chuan He

Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs’ basic research and translational applications. To overcome this challenge, we investigate if piggyBac transposon-mediated expression of SV40 T antigen can effectively immortalize mouse MEFs and that the immortalized MEFs can maintain long-term cell proliferation without compromising their multipotency. Using the piggyBac vector MPH86 which expresses SV40 T antigen flanked with flippase (FLP) recognition target (FRT) sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized. The immortalized MEFs (piMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by FLP recombinase. The piMEFs express most MEF markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages upon BMP9 stimulation in vitro. Stem cell implantation studies indicate that piMEFs can form bone, cartilage and adipose tissues upon BMP9 stimulation, whereas FLP-mediated removal of SV40 T antigen diminishes the ability of piMEFs to differentiate into these lineages, possibly due to the reduced expansion of progenitor populations. Our results demonstrate that piggyBac transposon-mediated expression of SV40 T can effectively immortalize MEFs and that the reversibly immortalized piMEFs not only maintain long-term cell proliferation but also retain their multipotency. Thus, the high transposition efficiency and the potential footprint-free natures may render piggyBac transposition an effective and safe strategy to immortalize progenitor cells isolated from limited tissue supplies, which is essential for basic and translational studies.


Oncology Reports | 2014

Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells

Yunyuan Zhang; Xian Chen; Min Qiao; Bing-Qiang Zhang; Ning Wang; Zhonglin Zhang; Zhan Liao; Liyi Zeng; Youlin Deng; Fang Deng; Junhui Zhang; Liangjun Yin; Wei Liu; Qian Zhang; Zhengjian Ya; Jixing Ye; Zhongliang Wang; Lan Zhou; Hue H. Luu; Rex C. Haydon; Tong-Chuan He; Hongyu Zhang

Colorectal cancer (CRC) is one of the most deadly cancers worldwide. Significant progress has been made in understanding the molecular pathogenesis of CRC, which has led to successful early diagnosis, surgical intervention and combination chemotherapy. However, limited therapeutic options are available for metastatic and/or drug-resistant CRC. While the aberrantly activated Wnt/β-catenin pathway plays a critical initiating role in CRC development, disruption of the bone morphogenetic protein (BMP) pathway causes juvenile polyposis syndrome, suggesting that BMP signaling may play a role in CRC development. However, conflicting results have been reported concerning the possible roles of BMP signaling in sporadic colon cancer. Here, we investigated the effect of BMP2 on the proliferation, migration, invasiveness and tumor growth capability of human CRC cells. Using an adenovirus vector that overexpresses BMP2 and the piggyBac transposon-mediated stable BMP2 overexpression CRC line, we found that exogenous BMP2 effectively inhibited HCT116 cell proliferation and colony formation. BMP2 was shown to suppress colon cancer cell migration and invasiveness. Under a low serum culture condition, forced expression of BMP2 induced a significantly increased level of apoptosis in HCT116 cells. Using a xenograft tumor model, we found that forced expression of BMP2 in HCT116 cells suppressed tumor growth, accompanied by decreased cell proliferation activity. Taken together, our results strongly suggest that BMP2 plays an important inhibitory role in governing the proliferation and aggressive features of human CRC cells.


Cell Transplantation | 2015

Reversibly Immortalized Mouse Articular Chondrocytes Acquire Long-Term Proliferative Capability While Retaining Chondrogenic Phenotype.

Joseph D. Lamplot; Bo Liu; Liangjun Yin; Wenwen Zhang; Zhongliang Wang; Gaurav Luther; Eric R. Wagner; Ruidong Li; Guoxin Nan; Wei Shui; Zhengjian Yan; Richard Rames; Fang Deng; Hongmei Zhang; Zhan Liao; Wei Liu; Junhui Zhang; Zhonglin Zhang; Qian Zhang; Jixing Ye; Youlin Deng; Min Qiao; Rex C. Haydon; Hue H. Luu; Jovito Angeles; Lewis L. Shi; Tong-Chuan He; Sherwin H. Ho

Cartilage tissue engineering holds great promise for treating cartilaginous pathologies including degenerative disorders and traumatic injuries. Effective cartilage regeneration requires an optimal combination of biomaterial scaffolds, chondrogenic seed cells, and biofactors. Obtaining sufficient chondrocytes remains a major challenge due to the limited proliferative capability of primary chondrocytes. Here we investigate if reversibly immortalized mouse articular chondrocytes (iMACs) acquire long-term proliferative capability while retaining the chondrogenic phenotype. Primary mouse articular chondrocytes (MACs) can be efficiently immortalized with a retroviral vector-expressing SV40 large T antigen flanked with Cre/loxP sites. iMACs exhibit long-term proliferation in culture, although the immortalization phenotype can be reversed by Cre recombinase. iMACs express the chondrocyte markers Col2a1 and aggrecan and produce chondroid matrix in micromass culture. iMACs form subcutaneous cartilaginous masses in athymic mice. Histologic analysis and chondroid matrix staining demonstrate that iMACs can survive, proliferate, and produce chondroid matrix. The chondrogenic growth factor BMP2 promotes iMACs to produce more mature chondroid matrix resembling mature articular cartilage. Taken together, our results demonstrate that iMACs acquire long-term proliferative capability without losing the intrinsic chondrogenic features of MACs. Thus, iMACs provide a valuable cellular platform to optimize biomaterial scaffolds for cartilage regeneration, to identify biofactors that promote the proliferation and differentiation of chondrogenic progenitors, and to elucidate the molecular mechanisms underlying chondrogenesis.


Cellular Physiology and Biochemistry | 2014

Functional Characteristics of Reversibly Immortalized Hepatic Progenitor Cells Derived from Mouse Embryonic Liver

Yang Bi; Yun He; Jiayi Huang; Yuxi Su; Gao-Hui Zhu; Yi Wang; Min Qiao; Bing-Qiang Zhang; Hongyu Zhang; Zhongliang Wang; Wei Liu; Jing Cui; Quan Kang; Zhonglin Zhang; Youlin Deng; Ruifang Li; Qian Zhang; Ke Yang; Hue H. Luu; Rex C. Haydon; Tong-Chuan He; Ni Tang

Background/Aims: Liver is a vital organ and retains its regeneration capability throughout adulthood, which requires contributions from different cell populations, including liver precursors and intrahepatic stem cells. To overcome the mortality of hepatic progenitors (iHPs) in vitro, we aim to establish reversibly immortalized hepatic progenitor cells from mouse embryonic liver. Methods and Results: Using retroviral system to stably express SV40 T antigen flanked with Cre/LoxP sites, we establish a repertoire of iHP clones with varied differentiation potential. The iHP cells maintain long-term proliferative activity and express varied levels of progenitor markers (Pou5f1/Oct4 and Dlk) and hepatocyte markers (AFP, Alb and ApoB). Five representative iHP clones express hepatic/pancreatic transcription factors HNF3α/Foxa1, HNF3β/Foxa2, and HNF4α/MODY1. Dexamethasone is shown to promote the expression of hepatocyte markers AFP and TAT, along with ICG-uptake and glycogen storage functions in the iHP clones. Cre-mediated removal of SV40 T antigen reverses the proliferative activity of iHP cells. When iHP cells are subcutaneously implanted in athymic nude mice, no tumor formation is observed for up to 8 weeks. Conclusions: We demonstrate that the established iHP cells are stable, reversible, and non-tumorigenic hepatic progenitor-like cells, which should be valuable for studying liver organogenesis, metabolic regulations, and hepatic lineage-specific differentiation.


PLOS ONE | 2015

TqPCR: A Touchdown qPCR Assay with Significantly Improved Detection Sensitivity and Amplification Efficiency of SYBR Green qPCR

Qian Zhang; Jing Wang; Fang Deng; Zhengjian Yan; Yinglin Xia; Zhongliang Wang; Jixing Ye; Youlin Deng; Zhonglin Zhang; Min Qiao; Ruifang Li; Sahitya Denduluri; Qiang Wei; Lianggong Zhao; Shun Lu; Xin Wang; Shengli Tang; Hao Liu; Hue H. Luu; Rex C. Haydon; Tong-Chuan He; Li Jiang

The advent of fluorescence-based quantitative real-time PCR (qPCR) has revolutionized the quantification of gene expression analysis in many fields, including life sciences, agriculture, forensic science, molecular diagnostics, and medicine. While SYBR Green-based qPCR is the most commonly-used platform due to its inexpensive nature and robust chemistry, quantifying the expression of genes with low abundance or RNA samples extracted from highly restricted or limited sources can be challenging because the detection sensitivity of SYBR Green-based qPCR is limited. Here, we develop a novel and effective touchdown qPCR (TqPCR) protocol by incorporating a 4-cycle touchdown stage prior to the quantification amplification stage. Using the same cDNA templates, we find that TqPCR can reduce the average Cq values for Gapdh, Rps13, and Hprt1 reference genes by 4.45, 5.47, and 4.94 cycles, respectively, when compared with conventional qPCR; the overall average Cq value reduction for the three reference genes together is 4.95. We further find that TqPCR can improve PCR amplification efficiency and thus increase detection sensitivity. When the quantification of Wnt3A-induced target gene expression in mesenchymal stem cells is analyzed, we find that, while both conventional qPCR and TqPCR can detect the up-regulation of the relatively abundant target Axin2, only TqPCR can detect the up-regulation of the lowly-expressed targets Oct4 and Gbx2. Finally, we demonstrate that the MRQ2 and MRQ3 primer pairs derived from mouse reference gene Tbp can be used to validate the RNA/cDNA integrity of qPCR samples. Taken together, our results strongly suggest that TqPCR may increase detection sensitivity and PCR amplification efficiency. Overall, TqPCR should be advantageous over conventional qPCR in expression quantification, especially when the transcripts of interest are lowly expressed, and/or the availability of total RNA is highly restricted or limited.


PLOS ONE | 2014

A Simplified and Versatile System for the Simultaneous Expression of Multiple siRNAs in Mammalian Cells Using Gibson DNA Assembly

Fang Deng; Xiang Chen; Zhan Liao; Zhengjian Yan; Zhongliang Wang; Youlin Deng; Qian Zhang; Zhonglin Zhang; Jixing Ye; Min Qiao; Ruifang Li; Sahitya Denduluri; Jing Wang; Qiang Wei; Melissa Li; Nisha Geng; Lianggong Zhao; Guolin Zhou; Penghui Zhang; Hue H. Luu; Rex C. Haydon; Russell R. Reid; Tian Yang; Tong-Chuan He

RNA interference (RNAi) denotes sequence-specific mRNA degradation induced by short interfering double-stranded RNA (siRNA) and has become a revolutionary tool for functional annotation of mammalian genes, as well as for development of novel therapeutics. The practical applications of RNAi are usually achieved by expressing short hairpin RNAs (shRNAs) or siRNAs in cells. However, a major technical challenge is to simultaneously express multiple siRNAs to silence one or more genes. We previously developed pSOS system, in which siRNA duplexes are made from oligo templates driven by opposing U6 and H1 promoters. While effective, it is not equipped to express multiple siRNAs in a single vector. Gibson DNA Assembly (GDA) is an in vitro recombination system that has the capacity to assemble multiple overlapping DNA molecules in a single isothermal step. Here, we developed a GDA-based pSOK assembly system for constructing single vectors that express multiple siRNA sites. The assembly fragments were generated by PCR amplifications from the U6-H1 template vector pB2B. GDA assembly specificity was conferred by the overlapping unique siRNA sequences of insert fragments. To prove the technical feasibility, we constructed pSOK vectors that contain four siRNA sites and three siRNA sites targeting human and mouse β-catenin, respectively. The assembly reactions were efficient, and candidate clones were readily identified by PCR screening. Multiple β-catenin siRNAs effectively silenced endogenous β-catenin expression, inhibited Wnt3A-induced β-catenin/Tcf4 reporter activity and expression of Wnt/β-catenin downstream genes. Silencing β-catenin in mesenchymal stem cells inhibited Wnt3A-induced early osteogenic differentiation and significantly diminished synergistic osteogenic activity between BMP9 and Wnt3A in vitro and in vivo. These findings demonstrate that the GDA-based pSOK system has been proven simplistic, effective and versatile for simultaneous expression of multiple siRNAs. Thus, the reported pSOK system should be a valuable tool for gene function studies and development of novel therapeutics.


Scientific Reports | 2015

Antibiotic monensin synergizes with EGFR inhibitors and oxaliplatin to suppress the proliferation of human ovarian cancer cells.

Youlin Deng; Junhui Zhang; Zhongliang Wang; Zhengjian Yan; Min Qiao; Jixing Ye; Qiang Wei; Jing Wang; Xin Wang; Lianggong Zhao; Shun Lu; Shengli Tang; Maryam K. Mohammed; Hao Liu; Jiaming Fan; Fugui Zhang; Yulong Zou; Junyi Liao; Hongbo Qi; Rex C. Haydon; Hue H. Luu; Tong-Chuan He; Liangdan Tang

Ovarian cancer is the most lethal gynecologic malignancy with an overall cure rate of merely 30%. Most patients experience recurrence within 12–24 months of cure and die of progressively chemotherapy-resistant disease. Thus, more effective anti-ovarian cancer therapies are needed. Here, we investigate the possibility of repurposing antibiotic monensin as an anti-ovarian cancer agent. We demonstrate that monensin effectively inhibits cell proliferation, migration and cell cycle progression, and induces apoptosis of human ovarian cancer cells. Monensin suppresses multiple cancer-related pathways including Elk1/SRF, AP1, NFκB and STAT, and reduces EGFR expression in ovarian cancer cells. Monensin acts synergistically with EGFR inhibitors and oxaliplatin to inhibit cell proliferation and induce apoptosis of ovarian cancer cells. Xenograft studies confirm that monensin effectively inhibits tumor growth by suppressing cell proliferation through targeting EGFR signaling. Our results suggest monensin may be repurposed as an anti-ovarian cancer agent although further preclinical and clinical studies are needed.


Cellular Physiology and Biochemistry | 2016

A Blockade of IGF Signaling Sensitizes Human Ovarian Cancer Cells to the Anthelmintic Niclosamide-Induced Anti- Proliferative and Anticancer Activities

Youlin Deng; Zhongliang Wang; Fugui Zhang; Min Qiao; Zhengjian Yan; Qiang Wei; Jing Wang; Hao Liu; Jiaming Fan; Yulong Zou; Junyi Liao; Xue Hu; Liqun Chen; Xinyi Yu; Rex C. Haydon; Hue H. Luu; Hongbo Qi; Tong-Chuan He; Junhui Zhang

Background/Aims: Ovarian cancer is the most lethal gynecologic malignancy, and there is an unmet clinical need to develop new therapies. Although showing promising anticancer activity, Niclosamide may not be used as a monotherapy. We seek to investigate whether inhibiting IGF signaling potentiates Niclosamides anticancer efficacy in human ovarian cancer cells. Methods: Cell proliferation and migration are assessed. Cell cycle progression and apoptosis are analyzed by flow cytometry. Inhibition of IGF signaling is accomplished by adenovirus-mediated expression of siRNAs targeting IGF-1R. Cancer-associated pathways are assessed using pathway-specific reporters. Subcutaneous xenograft model is used to determine anticancer activity. Results: We find that Niclosamide is highly effective on inhibiting cell proliferation, cell migration, and cell cycle progression, and inducing apoptosis in human ovarian cancer cells, possibly by targeting multiple signaling pathways involved in ELK1/SRF, AP-1, MYC/MAX and NFkB. Silencing IGF-1R exert a similar but weaker effect than that of Niclosamides. However, silencing IGF-1R significantly sensitizes ovarian cancer cells to Niclosamide-induced anti-proliferative and anticancer activities both in vitro and in vivo. Conclusion: Niclosamide as a repurposed anticancer agent may be more efficacious when combined with agents that target other signaling pathways such as IGF signaling in the treatment of human cancers including ovarian cancer.

Collaboration


Dive into the Min Qiao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jixing Ye

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Deng

University of Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge