Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Min Young Noh is active.

Publication


Featured researches published by Min Young Noh.


Brain Research | 2008

Amyloid-beta-induced neurotoxicity is reduced by inhibition of glycogen synthase kinase-3

Seong-Ho Koh; Min Young Noh; Seung Hyun Kim

Deposition of amyloid-beta protein (Abeta) is one of the most important pathologic features in Alzheimers disease. It is well known that Abeta induces neuronal cell death through several pathogenic mechanisms. Although the role of glycogen synthase kinase (GSK)-3beta in the neurotoxicity of Abeta has been highlighted, there has been no report evaluating the effect of direct GSK-3beta inhibition on Abeta-induced neurotoxicity. Thus, in this study, the relationship between GSK-3beta activity and Abeta-induced neurotoxicity was explored. To investigate the role of GSK-3beta in Abeta-induced neurotoxicity, neurons were treated with amyloid beta-protein (1-42) (Abeta42) oligomers with or without the addition of a GSK-3beta inhibitor for 72 h. An MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, trypan blue staining, and DAPI staining all showed that Abeta42 treatment alone resulted in decreased neuronal cell viability in a concentration-dependent manner. Abeta42 treatment significantly increased the activity of GSK-3beta and cell death signals such as phosphorylated Tau (pThr231), cytosolic cytochrome c, and activated caspase-3. Abeta42 treatment also resulted in decreased survival signals, including that of heat shock transcription factor-1. Treatment with a GSK-3beta inhibitor prevented Abeta-induced cell death. These results suggest that the neurotoxic effect of Abeta42 is mediated by GSK-3beta activation and that inhibition of GSK-3beta can reduce Abeta42-induced neurotoxicity.


Brain Research | 2007

Glycogen synthase kinase-3β activity plays very important roles in determining the fate of oxidative stress-inflicted neuronal cells

Kyu Yong Lee; Seong Ho Koh; Min Young Noh; Park Kw; Young Joo Lee; Seung Hyun Kim

Glycogen synthase kinase-3, especially the beta form (GSK-3beta), plays key roles in oxidative stress-induced neuronal cell death, an important pathogenic mechanism of various neurodegenerative diseases. Although the neuroprotective effects of GSK-3beta inhibitors have been described, the optimal level of GSK-3beta inhibition for neuronal cell survival has not yet been determined. We investigated the effect of varying GSK-3beta activity on the viability of oxidative stress-injured neuronally differentiated PC12 (nPC12) cells and intracellular signals related with the GSK-3beta and caspase-3 pathways. Compared to the nPC12 control cells treated with only 100 microM H(2)O(2), treatment of 50-200 nM GSK-3beta inhibitor II or 25-500 nM GSK-3beta inhibitor VIII reduced the increased enzyme activity by about 50% and protected the cells against H(2)O(2)-induced oxidative stress. The optimal concentration of GSK-3beta inhibitor II enhanced heat shock transcription factor-1 levels, decreased levels of phosphorylated tau (Ser202) and cytosolic cytochrome c, activated caspase-3, and cleaved poly (ADP-ribose) polymerase. In contrast, higher concentrations of GSK-3beta inhibitor II (more than 500 nM) induced neuronal cell death and showed opposite effects relative to the above described intracellular signals. These results suggest that optimized inhibitor levels for modulating GSK-3beta activity may prevent apoptosis induced by oxidative stress associated with neurodegenerative diseases.


Stem Cells and Development | 2009

Erythropoietin increases the motility of human bone marrow-multipotent stromal cells (hBM-MSCs) and enhances the production of neurotrophic factors from hBM-MSCs.

Seong-Ho Koh; Min Young Noh; Goang Won Cho; Kyung Suk Kim; Seung Hyun Kim

Cell therapy has been extensively studied as an approach to repair damage in nervous system diseases. Multipotent stromal cells [MSCs] are well known to have neuroprotective effects and neural differentiation potential. The ability to induce migration of MSCs near nervous system damage via direct transplantation or via intravenous injections and increase the secretion of neurotrophic factors from MSCs might improve our ability to repair damage to the nervous system through cell therapy. In the present study, we investigated whether recombinant human erythropoietin [rhEPO], known to have a hematopoietic effect, could increase the motility of human bone marrow [hBM]-MSCs and enhance production of neurotrophic factors from hBM-MSCs. Based on the results of our MTT assay, trypan blue staining, and bromodeoxyuridine ELISA, rhEPO treatment increases the viability of MSCs but not their proliferation. With a migration assay kit, we demonstrated that the motility of hBM-MSCs was enhanced in rhEPO-treated cells. Immunoblotting assays revealed increased expression of phospho-Akt, phospho-GSK-3beta, phospho-extracellular signal-regulated kinase (ERK), beta PAK-interacting exchange factor (PIX), CXCR4, phospho tyrosine kinase B (TrkB), and vascular endothelial growth factor receptor-2 [VEGFR-2] in rhEPO-treated cells. Reverse transcription-polymerase chain reaction and gelatin zymography demonstrated that rhEPO treatment induces MMP-2 mRNA level and activity. In the studies using ELISAs, we found that rhEPO could increase levels of stromal cell-derived factor-1alpha, VEGF, and brain-derived neurotrophic factors. These findings suggest that rhEPO can increase the viability and motility of hBM-MSCs by affecting various intracellular signals including Akt, ERK, beta-PIX, CXCR4, TrkB, VEGFR-2, and MMP-2 and can enhance the production of neurotrophic factors from hBM-MSCs.


Brain Research | 2010

The neuroprotective effect of erythropoietin-transduced human mesenchymal stromal cells in an animal model of ischemic stroke.

Goang-Won Cho; Seong-Ho Koh; Mi-Hwa Kim; A. Rum Yoo; Min Young Noh; Sechul Oh; Seung Hyun Kim

Erythropoietin (EPO) exhibits diverse cellular functions, including neurotrophic, anti-oxidant, anti-apoptotic, and anti-inflammatory effects in non-hematopoietic tissues. This study evaluated whether bone marrow mesenchymal stromal cells (MSCs) transduced with the EPO gene (EPO-MSCs) promoted neural cell survival and improved neurological deficits caused by ischemic stroke. EPO-MSCs stably produced high levels of EPO (10IU/ml) without any alteration of their mesenchymal phenotype. Both EPO transduction and treatment with 10 international units (IU) of recombinant human EPO (rhEPO) provided protection from H(2)O(2)-induced oxidative injury in human bone marrow mesenchymal stromal cells and in SH-SY5Y cells. EPO-MSCs were more protected than were MSCs treated with 10IU rhEPO (10U-MSCs). We also found that the expression of the neurotrophic factors BDNF, PD-ECGF, HGF, SDF-1alpha, and TGF-1beta increased in EPO-MSCs, while only BDNF and TGF-1beta increased in 10U-MSCs. Implantation of EPO-MSCs in an animal model of ischemic stroke significantly improved neurological function and decreased infarct volumes without affecting hematocrit level. An evaluation of the brain tissue 21days after implantation showed that EPO and phosphorylated Akt (a downstream mediator of EPO) increased only in brains implanted with EPO-MSCs. Transduction of the EPO gene into MSCs induced secretion of EPO and various trophic factors that may provide excellent neuroprotective effects in both in vitro and in vivo models of ischemic stroke.


Toxicology | 2008

Inhibition of glycogen synthase kinase-3 reduces L-DOPA-induced neurotoxicity.

Seong-Ho Koh; Song Cw; Min Young Noh; Hyun Young Kim; Kyu-Yong Lee; Young Joo Lee; Juhan Kim; Seung Hyun Kim; Hee-Tae Kim

The neurotoxicity of l-3,4-dihydroxyphenylalanine (L-DOPA), used for the treatment of Parkinsons disease, remains controversial. Although there are many reports suggesting that long-term treatment of L-DOPA causes neuronal death, an increasing body of recent evidence has proposed that L-DOPA might be neuroprotective rather than neurotoxic. We investigated the effect of L-DOPA on neuronally differentiated PC12 (nPC12) cells by treating cells with various concentrations of L-DOPA for 24h. We also studied whether glycogen synthase kinase (GSK)-3 activation is related to L-DOPA-induced neurotoxicity by simultaneously treating cells with several concentrations of L-DOPA and a GSK-3 inhibitor for 24h. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, trypan blue staining, cell counting kit-8, and DAPI staining all showed that L-DOPA decreased nPC12 cell viability at high concentrations. In addition, 100 microM L-DOPA treatment significantly increased the activity of GSK-3 and death signals including cytochrome c, activated caspase-3 and cleaved PARP, and decreased survival signals including heat shock transcription factor-1 in a concentration-dependent manner. Treatment with GSK-3 inhibitor VIII or lithium chloride prevented L-DOPA-induced cell death. Together, these results suggest that L-DOPA induces neuronal cell death at high concentrations and that the neurotoxic effect of L-DOPA might be mediated in part by GSK-3 activation.


Molecular Neurobiology | 2013

Direct GSK-3β Inhibition Enhances Mesenchymal Stromal Cell Migration by Increasing Expression of Beta-PIX and CXCR4

Young Seo Kim; Min Young Noh; Ji Young Kim; Hyun-Jeung Yu; Kyung Suk Kim; Seung Hyun Kim; Seong-Ho Koh

Mesenchymal stromal cells (MSCs) are emerging as candidate cells for the treatment of neurological diseases because of their neural replacement, neuroprotective, and neurotrophic effects. However, the majority of MSCs transplanted by various routes fail to reach the site of injury, and they have demonstrated only minimal therapeutic benefit in clinical trials. Therefore, enhancing the migration of MSCs to target sites is essential for this therapeutic strategy to be effective. In this study, we assessed whether inhibition of glycogen synthase kinase-3β (GSK-3β) increases the migration capacity of MSCs during ex vivo expansion. Human bone marrow MSCs (hBM-MSCs) were cultured with various GSK-3β inhibitors (LiCl, SB-415286, and AR-A014418). Using a migration assay kit, we found that the motility of hBM-MSCs was significantly enhanced by GSK-3β inhibition. Western blot analysis revealed increased levels of migration-related signaling proteins such as phospho-GSK-3β, β-catenin, phospho-c-Raf, phospho-extracellular signal-regulated kinase (ERK), phospho-β-PAK-interacting exchange factor (PIX), and CXC chemokine receptor 4 (CXCR4). In addition, real-time polymerase chain reaction demonstrated increased expression of matrix metalloproteinase-2 (MMP-2), membrane-type MMP-1 (MT1-MMP), and β-PIX. In the reverse approach, treatment with β-PIX shRNA or CXCR4 inhibitor (AMD 3100) reduced hBM-MSC migration. These findings suggest that inhibition of GSK-3β during ex vivo expansion of hBM-MSCs may enhance their migration capacity by increasing expression of β-catenin, phospho-c-Raf, phospho-ERK, and β-PIX and the subsequent up-regulation of CXCR4. Enhancing the migration capacity of hBM-MSCs by treating these cells with GSK-3β inhibitors may increase their therapeutic potential.


Stem Cells and Development | 2012

β-PIX Is Critical for Transplanted Mesenchymal Stromal Cell Migration

Seong Ho Koh; Yong Min Huh; Min Young Noh; Hyun Young Kim; Kyung Suk Kim; Eun Sook Lee; Hyun Ju Ko; Goang Won Cho; A. Rum Yoo; Ho Taek Song; Sejin Hwang; Kwangyeol Lee; Seungjoo Haam; Joseph A. Frank; Jin Suck Suh; Seung Hyun Kim

Bone marrow-derived mesenchymal stromal cells (MSCs) have been used successfully as a source of stem cells for treating neurodegenerative diseases. However, for reasons that are not clear, autologous MSC transplants have not yielded successful results in human trials. To test one possible reason, we compared the migratory ability of MSCs from amyotrophic lateral sclerosis (ALS) patients with those of healthy controls. We found that MSCs derived from ALS patients (ALS-MSCs) had a reduced ability to migrate, which may explain why autologous transplantation is not successful. We also found that expression of one of the intracellular factors implicated in migration, β-PIX, was significantly reduced in ALS-MSCs compared with healthy stem cells. Restoration of β-PIX expression by genetic manipulation restored the migratory ability of ALS-MSCs, and inhibition of β-PIX expression with shRNA reduced the migration of healthy MSCs. We suggest that transplantation of allogeneic or genetically modified autologous stem cells might be a more promising strategy for ALS patients than transplantation of autologous stem cells.


Stem Cells Translational Medicine | 2016

Mesenchymal Stem Cells Modulate the Functional Properties of Microglia via TGF‐β Secretion

Min Young Noh; Su Min Lim; Ki-Wook Oh; Kyung-Ah Cho; Jin-Seok Park; Kyung-Suk Kim; Su-Jung Lee; Min-Soo Kwon; Seung Hyun Kim

The regulation of microglial cell phenotype is a potential therapeutic intervention in neurodegenerative disease. Previously, we reported that transforming growth factor‐β (TGF‐β) levels in mesenchymal stromal cells (MSCs) could be used as potential biological markers to predict the effectiveness of autologous MSC therapy in patients with amyotrophic lateral sclerosis. However, the underlying mechanism of TGF‐β in MSCs was not fully elucidated in determining the functional properties of microglia. In this study, we aimed to clarify the role of TGF‐β that is involved in MSC effectiveness, especially focusing on microglia functional properties that play a pivotal role in neuroinflammation. We found that MSC‐conditioned media (MSC‐CM) inhibited proinflammatory cytokine expression, restored alternative activated microglia phenotype markers (fractalkine receptor, mannose receptor, CD200 receptor), and enhanced phagocytosis in lipopolysaccharide (LPS)‐stimulated microglia. In addition, TGF‐β in MSC‐CM played a major role in these effects by inhibiting the nuclear factor‐κB pathway and restoring the TGF‐β pathway in LPS‐stimulated microglia. Recombinant TGF‐β also induced similar effects to MSC‐CM in LPS‐stimulated microglia. Therefore, we propose that MSCs can modulate the functional properties of microglia via TGF‐β secretion, switching them from a classically activated phenotype to an inflammation‐resolving phenotype. The latter role may be associated with the inhibition of neuroinflammatory processes in neurodegenerative disorders.


Neuroscience Letters | 2014

Erythropoietin modulates the immune-inflammatory response of a SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS).

Min Young Noh; Kyung Ah Cho; Heejaung Kim; Sung-Min Kim; Seung Hyun Kim

Temporal patterns of inflammatory cytokine levels reflect the immune-inflammatory role in pathogenic mechanisms of SOD1 animal model of Amyotrophic Lateral Sclerosis (ALS) and these cytokines have important roles in both toxic and protective functions depending on the stage of disease progression in ALS patients. Erythropoietin (EPO) has various neuroprotective effects, including the reduction of inflammation, the enhancement of survival signals, and the prevention of neuronal cell death. This study was undertaken to evaluate the temporal pattern of inflammatory cytokine levels induced by EPO treatment in the SOD1(G93A) mice model of ALS. We treated mice with 5 IU of EPO per gram of animal weight once every other week after the mice were 60 days old, and pro/anti-inflammatory cytokines were analyzed at 30, 60, 90, and 120 days of age. In untreated controls, pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β, CCL2 (MCP-1), CCL5 (RANTES), CXCL10 (IP-10), and IL-17A) were gradually increased with aging. In contrast, increment of anti-inflammatory cytokines (IL-4, IL-10, and TGF-β) showed the highest level at 90 days of age and their levels were remarkably faded until 120 days of age. EPO treatment, however, showed significantly decreased level of pro-inflammatory cytokines. And, up-regulated levels of anti-inflammatory cytokines with EPO were highly maintained until 120 days. In addition, the treatment of EPO delayed symptom onset, prolonged time of rotarod failure, and showed more preserved number of motoneurons. These findings suggest that EPO may be a potential therapeutic candidate having ability to modulate immune-inflammation in ALS.


Experimental and Therapeutic Medicine | 2016

Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons

Jong Hee Jeong; Min Young Noh; Jae‑Hyeok Choi; Haiwon Lee; Seung Hyun Kim

Bamboo salt (BS) and soy sauce (SS) are traditional foods in Asia, which contain antioxidants that have cytoprotective effects on the body. The majority of SS products contain high levels of common salt, consumption of which has been associated with numerous detrimental effects on the body. However, BS may be considered a healthier substitute to common salt. The present study hypothesized that SS made from BS, known as bamboo salt soy sauce (BSSS), may possess enhanced cytoprotective properties; this was evaluated using a hydrogen peroxide (H2O2)-induced neuronal cell death rat model. Rat neuronal cells were pretreated with various concentrations (0.001, 0.01, 0.1, 1 and 10%) of BSSS, traditional soy sauce (TRSS) and brewed soy sauce (BRSS), and were subsequently exposed to H2O2 (100 µM). The viability of neuronal cells, and the occurrence of DNA fragmentation, was subsequently examined. Pretreatment of neuronal cells with TRSS and BRSS reduced cell viability in a concentration-dependent manner, whereas neuronal cells pretreated with BSSS exhibited increased cell viability, as compared with non-treated neuronal cells. Furthermore, neuronal cells pretreated with 0.01% BSSS exhibited the greatest increase in viability. Exposure of neuronal cells to H2O2 significantly increased the levels of reactive oxygen species (ROS), B-cell lymphoma 2-associated X protein, poly (ADP-ribose), cleaved poly (ADP-ribose) polymerase, cytochrome c, apoptosis-inducing factor, cleaved caspase-9 and cleaved caspase-3, in all cases. Pretreatment of neuronal cells with BSSS significantly reduced the levels of ROS generated by H2O2, and increased the levels of phosphorylated AKT and phosphorylated glycogen synthase kinase-3β. Furthermore, the observed effects of BSSS could be blocked by administration of 10 µM LY294002, a phosphatidylinositol 3-kinase inhibitor. The results of the present study suggested that BSSS may exert positive neuroprotective effects against H2O2-induced cell death by reducing oxidative stress, enhancing survival signaling, and inhibiting death signals.

Collaboration


Dive into the Min Young Noh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge