Mina Shahmohammadi
Delft University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mina Shahmohammadi.
international solid-state circuits conference | 2015
Mina Shahmohammadi; Masoud Babaie; Robert Bogdan Staszewski
The 1/f (flicker) noise upconversion degrades the close-in spectrum of CMOS RF oscillators. The resulting 1/f3 phase noise (PN) can be an issue in PLLs with a loop bandwidth of <;1MHz, which practically implies all cellular phones. A previously published noise-filtering technique [1] and adding resistors in series with gm-device drains [2] have shown significant reduction of the 1/f3 oscillator PN corner. However, the former needs an additional tunable inductor and the latter degrades PN in the 20dB/dec region.
european solid-state circuits conference | 2013
Mina Shahmohammadi; Kianoush Souri; Kofi A. A. Makinwa
This paper presents a CMOS temperature sensor intended for the temperature compensation of MEMS frequency references. It is based on a Wien bridge RC filter, whose phase-shift, due to the temperature dependency of the resistors used, is temperature dependent. This phase shift is then digitized by a phase domain sigma-delta modulator. The sensor was implemented in 0.18μm CMOS, consumes 36 μW and achieves 6mK resolution in a conversion time of 100msec. After batch calibration and a 3-point trim, it achieves ±0.15°C (3σ) inaccuracy over the industrial range (-40°C to 85°C).
IEEE Journal of Solid-state Circuits | 2016
Mina Shahmohammadi; Masoud Babaie; Robert Bogdan Staszewski
In this paper, we propose a method to reduce a flicker (1/f) noise upconversion in voltage-biased RF oscillators. Excited by a harmonically rich tank current, a typical oscillation voltage waveform is observed to have asymmetric rise and fall times due to even-order current harmonics flowing into the capacitive part, as it presents the lowest impedance path. The asymmetric oscillation waveform results in an effective impulse sensitivity function of a nonzero dc value, which facilitates the 1/f noise upconversion into the oscillators 1/f3 phase noise. We demonstrate that if the ω0 tank exhibits an auxiliary resonance at 2ω0, thereby forcing this current harmonic to flow into the equivalent resistance of the 2ω0 resonance, then the oscillation waveform would be symmetric and the flicker noise upconversion would be largely suppressed. The auxiliary resonance is realized at no extra silicon area in both inductor-and transformer-based tanks by exploiting different behaviors of inductors and transformers in differential-and common-mode excitations. These tanks are ultimately employed in designing modified class-D and class-F oscillators in 40 nm CMOS technology. They exhibit an average flicker noise corner of less than 100 kHz.
IEEE Journal of Solid-state Circuits | 2016
Masoud Babaie; Feng-Wei Kuo; Huan-Neng Ron Chen; Lan-Chou Cho; Chewn-Pu Jou; Fu-Lung Hsueh; Mina Shahmohammadi; Robert Bogdan Staszewski
We propose a new transmitter architecture for ultra-low power radios in which the most energy-hungry RF circuits operate at a supply just above a threshold voltage of CMOS transistors. An all-digital PLL employs a digitally controlled oscillator with switching current sources to reduce supply voltage and power without sacrificing its startup margin. It also reduces 1/f noise and supply pushing, thus allowing the ADPLL, after settling, to reduce its sampling rate or shut it off entirely during a direct DCO data modulation. The switching power amplifier integrates its matching network while operating in class-E/F2 to maximally enhance its efficiency at low voltage. The transmitter is realized in 28 nm digital CMOS and satisfies all metal density and other manufacturing rules. It consumes 3.6 mW/5.5 mW while delivering 0 dBm/3 dBm RF power in Bluetooth Low-Energy mode.
international solid-state circuits conference | 2017
Edoardo Charbon; Fabio Sebastiano; Masoud Babaie; Andrei Vladimirescu; Mina Shahmohammadi; Robert Bogdan Staszewski; Harald Homulle; Bishnu Patra; Jeroen P. G. van Dijk; Rosario M. Incandela; Lin Song; Bahador Valizadehpasha
Quantum computing holds the promise to achieve unprecedented computation power and to solve problems today intractable. State-of-the-art quantum processors consist of arrays of quantum bits (qubits) operating at a very low base temperature, typically a few tens of mK, as shown in Fig. 15.5.1 The qubit states degrade naturally after a certain time, upon loss of quantum coherence. For proper operation, an error-correcting loop must be implemented by a classical controller, which, in addition of handling execution of a quantum algorithm, reads the qubit state and performs the required corrections. However, while few qubits (∼10) in todays quantum processors can be easily connected to a room-temperature controller, it appears extremely challenging, if not impossible, to manage the thousands of qubits required in practical quantum algorithms [1].
radio frequency integrated circuits symposium | 2015
Masoud Babaie; Mina Shahmohammadi; Robert Bogdan Staszewski
This paper proposes a new RF oscillator topology that is suitable for ultra-low voltage and power applications. By employing alternating current source transistors, the structure combines the benefits of low supply voltage operation of conventional NMOS cross-coupled oscillators together with high current efficiency of the complementary push-pull oscillators. In addition, the 1/f noise upconversion is also reduced. The 40nm CMOS prototype exhibits an average FoM of 189.5 dBc/Hz over 4-5 GHz tuning range, dissipating 0.5mW from 0.5V power supply, while abiding by the technology manufacturing rules.
IEEE Transactions on Circuits and Systems | 2017
Mina Shahmohammadi; Masoud Babaie; Robert Bogdan Staszewski
In this paper, we propose a method to broaden a tuning range of a CMOS LC-tank oscillator without sacrificing its area. The extra tuning range is achieved by forcing a strongly coupled transformer-based tank into a common-mode resonance at a much higher frequency than in its main differential-mode oscillation. The oscillator employs separate active circuits to excite each mode but it shares the same tank, which largely dominates the core area but is on par with similar single-core designs. The tank is forced in common-mode oscillation by two injection locked Colpitts oscillators at the transformer’s primary winding, while a two-port structure provides differential-mode oscillation. An analysis is also presented to compare the phase noise performance of the dual-core oscillator in common-mode and differential-mode excitations. A prototype implemented in digital 40-nm CMOS verifies the dual-mode oscillation and occupies only 0.12 mm2 and measures 56% tuning range.
european solid state circuits conference | 2016
Ying Wu; Mina Shahmohammadi; Yue Chen; Ping Lu; Robert Bogdan Staszewski
We present a digital-to-time converter (DTC)-assisted fractional-N wide-bandwidth all-digital PLL (ADPLL). It employs a MASH ΔΣ time-to-digital converter (TDC) to achieve low in-band phase noise, and a wide-tuning range digitally-controlled oscillator (DCO). Fabricated in 40nm CMOS, the ADPLL consumes 10.7 mW while outputting 1.73 to 3.38 GHz (after a ÷2 division) and achieves better than -109 dBc/Hz in-band phase noise and 420fsrms integrated jitter.
IEEE Journal of Solid-state Circuits | 2017
Feng-Wei Kuo; Sandro Binsfeld Ferreira; Huan-Neng Ron Chen; Lan-Chou Cho; Chewn-Pu Jou; Fu-Lung Hsueh; Iman Madadi; Massoud Tohidian; Mina Shahmohammadi; Masoud Babaie; Robert Bogdan Staszewski
IEEE Journal of Solid-state Circuits | 2017
Ying Wu; Mina Shahmohammadi; Yue Chen; Ping Lu; Robert Bogdan Staszewski