Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minako Ueda is active.

Publication


Featured researches published by Minako Ueda.


Developmental Cell | 2008

Differential Expression of WOX Genes Mediates Apical-Basal Axis Formation in the Arabidopsis Embryo

Holger Breuninger; Enno Rikirsch; Marita Hermann; Minako Ueda; Thomas Laux

Axis formation is one of the earliest patterning events in plant and animal embryogenesis. In Arabidopsis, the main axis of the embryo is evident at the asymmetric division of the zygote into a small, embryonic apical cell and a large extraembryonic basal cell. Here we show that the homeobox genes WOX2 and WOX8, which are initially coexpressed in the zygote, act as complementary cell fate regulators in the apical and basal lineage, respectively. Furthermore, WOX8 expression in the basal cell lineage is required for WOX2 expression and normal development of the proembryo, suggesting an inductive mechanism. The identified WOX cascade is required for normal expression of a reporter gene of the auxin efflux carrier PIN1 and for the formation of auxin response maxima in the proembryo. Thus, our results link the spatial separation of WOX transcription factors to localized auxin response and the formation of the main body axis in the embryo.


Developmental Cell | 2011

Transcriptional Activation of Arabidopsis Axis Patterning Genes WOX8/9 Links Zygote Polarity to Embryo Development

Minako Ueda; Zhongjuan Zhang; Thomas Laux

In most flowering plants, the apical-basal body axis is established by an asymmetric division of the polarized zygote. In Arabidopsis, early embryo patterning is regulated by WOX homeobox genes, which are coexpressed in the zygote but become restricted to apical (WOX2) and basal (WOX8/9) cells. How the asymmetry of zygote division is regulated and connected to the daughter cell fates is largely unknown. Here, we show that expression of WOX8 is independent of the axis patterning signal auxin, but, together with the redundant gene WOX9, is activated in the zygote, its basal daughter cell, and the hypophysis by the zinc-finger transcription factor WRKY2. In wrky2 mutants, egg cells polarize normally but zygotes fail to reestablish polar organelle positioning from a transient symmetric state, resulting in equal cell division and distorted embryo development. Both defects are rescued by overexpressing WOX8, indicating that WRKY2-dependent WOX8 transcription links zygote polarization with embryo patterning.


Angewandte Chemie | 2015

Environment-Sensitive Fluorescent Probe: A Benzophosphole Oxide with an Electron-Donating Substituent†

Eriko Yamaguchi; Chenguang Wang; Aiko Fukazawa; Masayasu Taki; Yoshikatsu Sato; Taeko Sasaki; Minako Ueda; Narie Sasaki; Tetsuya Higashiyama; Shigehiro Yamaguchi

Electron-donating aryl groups were attached to electron-accepting benzophosphole skeletons. Among several derivatives thus prepared, one benzophosphole oxide was particularly interesting, as it retained high fluorescence quantum yields even in polar and protic solvents. This phosphole-based compound exhibited a drastic color change of its fluorescence spectrum as a function of the solvent polarity, while the absorption spectra remained virtually unchanged. Capitalizing on these features, this phosphole-based compound was used to stain adipocytes, in which the polarity of subcellular compartments could then be discriminated on the basis of the color change of the fluorescence emission.


Cell | 2015

Rapid Elimination of the Persistent Synergid through a Cell Fusion Mechanism

Daisuke Maruyama; Ronny Völz; Hidenori Takeuchi; Toshiyuki Mori; Tomoko Igawa; Daisuke Kurihara; Tomokazu Kawashima; Minako Ueda; Masaki Ito; Masaaki Umeda; Shuh-ichi Nishikawa; Rita Groß-Hardt; Tetsuya Higashiyama

In flowering plants, fertilization-dependent degeneration of the persistent synergid cell ensures one-on-one pairings of male and female gametes. Here, we report that the fusion of the persistent synergid cell and the endosperm selectively inactivates the persistent synergid cell in Arabidopsis thaliana. The synergid-endosperm fusion causes rapid dilution of pre-secreted pollen tube attractant in the persistent synergid cell and selective disorganization of the synergid nucleus during the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling, an inducer of the synergid nuclear disorganization. Therefore, two female gametes (the egg and the central cell) control independent pathways yet coordinately accomplish the elimination of the persistent synergid cell by double fertilization.


EMBO Reports | 2013

ATM‐mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis

Kaoru Yoshiyama; Junya Kobayashi; Nobuo Ogita; Minako Ueda; Seisuke Kimura; Hisaji Maki; Masaaki Umeda

Arabidopsis SOG1 (suppressor of gamma response 1) is a plant‐specific transcription factor that governs the DNA damage response. Here we report that SOG1 is phosphorylated in response to DNA damage, and that this phosphorylation is mediated by the sensor kinase ataxia telangiectasia mutated (ATM). We show that SOG1 phosphorylation is crucial for the response to DNA damage, including transcriptional induction of downstream genes, transient arrest of cell division and programmed cell death. Although the amino‐acid sequences of SOG1 and the mammalian tumour suppressor p53 show no similarity, this study demonstrates that ATM‐mediated phosphorylation of a transcription factor has a pivotal role in the DNA damage response in both plants and mammals.


Current Opinion in Plant Biology | 2012

The origin of the plant body axis

Minako Ueda; Thomas Laux

During embryogenesis, the basic body plan of an organism develops from a unicellular zygote. In most flowering plants, the polar zygote divides asymmetrically, making visible the apical-basal axis in the early embryo. The molecular mechanisms governing how the zygote polarizes and how this polarity is linked to embryo axis formation have been obscure, mainly owing to the difficulties to access the zygote that is deeply embedded in the maternal tissue. In this review, we summarize recent findings identifying key regulators in Arabidopsis and developing novel approaches in various plant species, which altogether set the stage for unraveling embryo axis formation.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Cytoskeleton dynamics control the first asymmetric cell division in Arabidopsis zygote

Yusuke Kimata; Takumi Higaki; Tomokazu Kawashima; Daisuke Kurihara; Yoshikatsu Sato; Tomomi Yamada; Seiichiro Hasezawa; Frédéric Berger; Tetsuya Higashiyama; Minako Ueda

Significance In animals and plants, the zygote divides unequally, and the daughter cells inherit different developmental fates to form a proper embryo along the body axis. The cytological events leading to zygote polarization have remained unknown in flowering plants. Here, we report that the two essential components of the cytoskeleton, microtubules and actin filaments, are both disorganized on fertilization and then, arranged to form a transverse ring leading directional cell elongation and longitudinal arrays underlying polar nuclear migration, respectively. These results provide insights into the intracellular dynamics of zygote and the specific roles of cytoskeletons on zygote polarization in flowering plants. The asymmetric cell division of the zygote is the initial and crucial developmental step in most multicellular organisms. In flowering plants, whether zygote polarity is inherited from the preexisting organization in the egg cell or reestablished after fertilization has remained elusive. How dynamically the intracellular organization is generated during zygote polarization is also unknown. Here, we used a live-cell imaging system with Arabidopsis zygotes to visualize the dynamics of the major elements of the cytoskeleton, microtubules (MTs), and actin filaments (F-actins), during the entire process of zygote polarization. By combining image analysis and pharmacological experiments using specific inhibitors of the cytoskeleton, we found features related to zygote polarization. The preexisting alignment of MTs and F-actin in the egg cell is lost on fertilization. Then, MTs organize into a transverse ring defining the zygote subapical region and driving cell outgrowth in the apical direction. F-actin forms an apical cap and longitudinal arrays and is required to position the nucleus to the apical region of the zygote, setting the plane of the first asymmetrical division. Our findings show that, in flowering plants, the preexisting cytoskeletal patterns in the egg cell are lost on fertilization and that the zygote reorients the cytoskeletons to perform directional cell elongation and polar nuclear migration.


Plant Journal | 2014

A dual-color marker system for in vivo visualization of cell cycle progression in Arabidopsis.

Ke Yin; Minako Ueda; Hitomi Takagi; Takehiro Kajihara; Shiori Sugamata Aki; Takashi Nobusawa; Chikage Umeda-Hara; Masaaki Umeda

Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M-specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S-phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy-terminal region is responsible for proteasome-mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S-specific promoter of a histone 3.1-type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M-specific CYCB1-GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time-lapse imaging of cell cycle progression. The resultant dual-color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development.


Genes & Development | 2017

Transcriptional integration of paternal and maternal factors in the Arabidopsis zygote

Minako Ueda; Ernst Aichinger; Wen Gong; Edwin P. Groot; Inge Verstraeten; Lam Dai Vu; Ive De Smet; Tetsuya Higashiyama; Masaaki Umeda; Thomas Laux

In many plants, the asymmetric division of the zygote sets up the apical-basal axis of the embryo. Unlike animals, plant zygotes are transcriptionally active, implying that plants have evolved specific mechanisms to control transcriptional activation of patterning genes in the zygote. In Arabidopsis, two pathways have been found to regulate zygote asymmetry: YODA (YDA) mitogen-activated protein kinase (MAPK) signaling, which is potentiated by sperm-delivered mRNA of the SHORT SUSPENSOR (SSP) membrane protein, and up-regulation of the patterning gene WOX8 by the WRKY2 transcription factor. How SSP/YDA signaling is transduced into the nucleus and how these pathways are integrated have remained elusive. Here we show that paternal SSP/YDA signaling directly phosphorylates WRKY2, which in turn leads to the up-regulation of WOX8 transcription in the zygote. We further discovered the transcription factors HOMEODOMAIN GLABROUS11/12 (HDG11/12) as maternal regulators of zygote asymmetry that also directly regulate WOX8 transcription. Our results reveal a framework of how maternal and paternal factors are integrated in the zygote to regulate embryo patterning.


Journal of Visualized Experiments | 2017

In Vitro Ovule Cultivation for Live-cell Imaging of Zygote Polarization and Embryo Patterning in Arabidopsis thaliana

Daisuke Kurihara; Yusuke Kimata; Tetsuya Higashiyama; Minako Ueda

In most flowering plants, the zygote and embryo are hidden deep in the mother tissue, and thus it has long been a mystery of how they develop dynamically; for example, how the zygote polarizes to establish the body axis and how the embryo specifies various cell fates during organ formation. This manuscript describes an in vitro ovule culture method to perform live-cell imaging of developing zygotes and embryos of Arabidopsis thaliana. The optimized cultivation medium allows zygotes or early embryos to grow into fertile plants. By combining it with a poly(dimethylsiloxane) (PDMS) micropillar array device, the ovule is held in the liquid medium in the same position. This fixation is crucial to observe the same ovule under a microscope for several days from the zygotic division to the late embryo stage. The resulting live-cell imaging can be used to monitor the real-time dynamics of zygote polarization, such as nuclear migration and cytoskeleton rearrangement, and also the cell division timing and cell fate specification during embryo patterning. Furthermore, this ovule cultivation system can be combined with inhibitor treatments to analyze the effects of various factors on embryo development, and with optical manipulations such as laser disruption to examine the role of cell-cell communication.

Collaboration


Dive into the Minako Ueda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaaki Umeda

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas Laux

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge