Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mindy I. Davis is active.

Publication


Featured researches published by Mindy I. Davis.


Journal of Biological Chemistry | 2014

Biochemical, Cellular and Biophysical Characterization of a Potent Inhibitor of Mutant Isocitrate Dehydrogenase IDH1

Mindy I. Davis; Stefan Gross; Min Shen; Kimberly Straley; Rajan Pragani; Wendy A. Lea; Janeta Popovici-Muller; Byron DeLaBarre; Erin Artin; Natasha Thorne; Douglas S. Auld; Zhuyin Li; Lenny Dang; Matthew B. Boxer; Anton Simeonov

Background: IDH1 R132H, implicated in glioblastoma and AML, produces the oncometabolite 2-HG. Results: A detailed binding mechanism of a small molecule inhibitor (ML309) is proposed. Conclusion: ML309 competes with α-KG but is uncompetitive with NADPH and rapidly and reversibly affects cellular 2-HG levels. Significance: Understanding IDH1 R132H inhibition sets the stage for targeting IDH1 R132H for the treatment of cancer. Two mutant forms (R132H and R132C) of isocitrate dehydrogenase 1 (IDH1) have been associated with a number of cancers including glioblastoma and acute myeloid leukemia. These mutations confer a neomorphic activity of 2-hydroxyglutarate (2-HG) production, and 2-HG has previously been implicated as an oncometabolite. Inhibitors of mutant IDH1 can potentially be used to treat these diseases. In this study, we investigated the mechanism of action of a newly discovered inhibitor, ML309, using biochemical, cellular, and biophysical approaches. Substrate binding and product inhibition studies helped to further elucidate the IDH1 R132H catalytic cycle. This rapidly equilibrating inhibitor is active in both biochemical and cellular assays. The (+) isomer is active (IC50 = 68 nm), whereas the (−) isomer is over 400-fold less active (IC50 = 29 μm) for IDH1 R132H inhibition. IDH1 R132C was similarly inhibited by (+)-ML309. WT IDH1 was largely unaffected by (+)-ML309 (IC50 >36 μm). Kinetic analyses combined with microscale thermophoresis and surface plasmon resonance indicate that this reversible inhibitor binds to IDH1 R132H competitively with respect to α-ketoglutarate and uncompetitively with respect to NADPH. A reaction scheme for IDH1 R132H inhibition by ML309 is proposed in which ML309 binds to IDH1 R132H after formation of the IDH1 R132H NADPH complex. ML309 was also able to inhibit 2-HG production in a glioblastoma cell line (IC50 = 250 nm) and had minimal cytotoxicity. In the presence of racemic ML309, 2-HG levels drop rapidly. This drop was sustained until 48 h, at which point the compound was washed out and 2-HG levels recovered.


PLOS ONE | 2013

A Homogeneous, High-Throughput Assay for Phosphatidylinositol 5-Phosphate 4-Kinase with a Novel, Rapid Substrate Preparation

Mindy I. Davis; Atsuo T. Sasaki; Min Shen; Brooke M. Emerling; Natasha Thorne; Sam Michael; Rajan Pragani; Matthew B. Boxer; Kazutaka Sumita; Koh Takeuchi; Douglas S. Auld; Zhuyin Li; Lewis C. Cantley; Anton Simeonov

Phosphoinositide kinases regulate diverse cellular functions and are important targets for therapeutic development for diseases, such as diabetes and cancer. Preparation of the lipid substrate is crucial for the development of a robust and miniaturizable lipid kinase assay. Enzymatic assays for phosphoinositide kinases often use lipid substrates prepared from lyophilized lipid preparations by sonication, which result in variability in the liposome size from preparation to preparation. Herein, we report a homogeneous 1536-well luciferase-coupled bioluminescence assay for PI5P4Kα. The substrate preparation is novel and allows the rapid production of a DMSO-containing substrate solution without the need for lengthy liposome preparation protocols, thus enabling the scale-up of this traditionally difficult type of assay. The Z’-factor value was greater than 0.7 for the PI5P4Kα assay, indicating its suitability for high-throughput screening applications. Tyrphostin AG-82 had been identified as an inhibitor of PI5P4Kα by assessing the degree of phospho transfer of γ-32P-ATP to PI5P; its inhibitory activity against PI5P4Kα was confirmed in the present miniaturized assay. From a pilot screen of a library of bioactive compounds, another tyrphostin, I-OMe tyrphostin AG-538 (I-OMe-AG-538), was identified as an ATP-competitive inhibitor of PI5P4Kα with an IC50 of 1 µM, affirming the suitability of the assay for inhibitor discovery campaigns. This homogeneous assay may apply to other lipid kinases and should help in the identification of leads for this class of enzymes by enabling high-throughput screening efforts.


Bioorganic & Medicinal Chemistry Letters | 2013

Identification of potent Yes1 kinase inhibitors using a library screening approach.

Paresma Patel; Hongmao Sun; Samuel Q. Li; Min Shen; Javed Khan; Craig J. Thomas; Mindy I. Davis

Yes1 kinase has been implicated as a potential therapeutic target in a number of cancers including melanomas, breast cancers, and rhabdomyosarcomas. Described here is the development of a robust and miniaturized biochemical assay for Yes1 kinase that was applied in a high throughput screen (HTS) of kinase-focused small molecule libraries. The HTS provided 144 (17% hit rate) small molecule compounds with IC₅₀ values in the sub-micromolar range. Three of the most potent Yes1 inhibitors were then examined in a cell-based assay for inhibition of cell survival in rhabdomyosarcoma cell lines. Homology models of Yes1 were generated in active and inactive conformations, and docking of inhibitors supports binding to the active conformation (DFG-in) of Yes1. This is the first report of a large high throughput enzymatic activity screen for identification of Yes1 kinase inhibitors, thereby elucidating the polypharmacology of a variety of small molecules and clinical candidates.


Journal of Biological Chemistry | 2016

Small Molecule Inhibition of the Ubiquitin-specific Protease USP2 Accelerates cyclin D1 Degradation and Leads to Cell Cycle Arrest in Colorectal Cancer and Mantle Cell Lymphoma Models

Mindy I. Davis; Rajan Pragani; Jennifer T. Fox; Min Shen; Kalindi Parmar; Emily Gaudiano; Li Liu; Cordelle Tanega; Lauren McGee; Matthew D. Hall; Crystal McKnight; Paul Shinn; Henrike Nelson; Debasish Chattopadhyay; Alan D. D'Andrea; Douglas S. Auld; Larry DeLucas; Zhuyin Li; Matthew B. Boxer; Anton Simeonov

Deubiquitinases are important components of the protein degradation regulatory network. We report the discovery of ML364, a small molecule inhibitor of the deubiquitinase USP2 and its use to interrogate the biology of USP2 and its putative substrate cyclin D1. ML364 has an IC50 of 1.1 μm in a biochemical assay using an internally quenched fluorescent di-ubiquitin substrate. Direct binding of ML364 to USP2 was demonstrated using microscale thermophoresis. ML364 induced an increase in cellular cyclin D1 degradation and caused cell cycle arrest as shown in Western blottings and flow cytometry assays utilizing both Mino and HCT116 cancer cell lines. ML364, and not the inactive analog 2, was antiproliferative in cancer cell lines. Consistent with the role of cyclin D1 in DNA damage response, ML364 also caused a decrease in homologous recombination-mediated DNA repair. These effects by a small molecule inhibitor support a key role for USP2 as a regulator of cell cycle, DNA repair, and tumor cell growth.


Human Molecular Genetics | 2014

Inheritance of Rare Functional GCKR Variants and Their Contribution to Triglyceride Levels in Families

Matthew G. Rees; Anne Raimondo; Jian Wang; Matthew R. Ban; Mindy I. Davis; Amy Barrett; Jessica Ranft; David Jagdhuhn; Rica Waterstradt; Simone Baltrusch; Anton Simeonov; Francis S. Collins; Robert A. Hegele; Anna L. Gloyn

Significant resources have been invested in sequencing studies to investigate the role of rare variants in complex disease etiology. However, the diagnostic interpretation of individual rare variants remains a major challenge, and may require accurate variant functional classification and the collection of large numbers of variant carriers. Utilizing sequence data from 458 individuals with hypertriglyceridemia and 333 controls with normal plasma triglyceride levels, we investigated these issues using GCKR, encoding glucokinase regulatory protein. Eighteen rare non-synonymous GCKR variants identified in these 791 individuals were comprehensively characterized by a range of biochemical and cell biological assays, including a novel high-throughput-screening-based approach capable of measuring all variant proteins simultaneously. Functionally deleterious variants were collectively associated with hypertriglyceridemia, but a range of in silico prediction algorithms showed little consistency between algorithms and poor agreement with functional data. We extended our study by obtaining sequence data on family members; however, functional variants did not co-segregate with triglyceride levels. Therefore, despite evidence for their collective functional and clinical relevance, our results emphasize the low predictive value of rare GCKR variants in individuals and the complex heritability of lipid traits.


Journal of Medicinal Chemistry | 2012

Discovery of highly potent and selective pan-Aurora kinase inhibitors with enhanced in vivo antitumor therapeutic index.

Gang Liu; Sunny Abraham; Lan Tran; Troy Vickers; Shimin Xu; Michael J. Hadd; Sheena Quiambao; Mark W. Holladay; Helen Hua; Julia M. Ford Pulido; Ruwanthi N. Gunawardane; Mindy I. Davis; Shawn R. Eichelberger; Julius L. Apuy; Dana Gitnick; Michael F. Gardner; Joyce K. James; Mike A. Breider; Barbara A. Belli; Robert C. Armstrong; Daniel Kelly Treiber

Serine/threonine protein kinases Aurora A, B, and C play essential roles in cell mitosis and cytokinesis. Currently a number of Aurora kinase inhibitors with different isoform selectivities are being evaluated in the clinic. Herein we report the discovery and characterization of 21c (AC014) and 21i (AC081), two structurally novel, potent, kinome-selective pan-Aurora inhibitors. In the human colon cancer cell line HCT-116, both compounds potently inhibit histone H3 phosphorylation and cell proliferation while inducing 8N polyploidy. Both compounds administered intravenously on intermittent schedules displayed potent and durable antitumor activity in a nude rat HCT-116 tumor xenograft model and exhibited good in vivo tolerability. Taken together, these data support further development of both 21c and 21i as potential therapeutic agents for the treatment of solid tumors and hematological malignancies.


PLOS ONE | 2014

A panel of diverse assays to interrogate the interaction between glucokinase and glucokinase regulatory protein, two vital proteins in human disease.

Matthew G. Rees; Mindy I. Davis; Min Shen; Steve Titus; Anne Raimondo; Amy Barrett; Anna L. Gloyn; Francis S. Collins; Anton Simeonov

Recent genetic and clinical evidence has implicated glucokinase regulatory protein (GKRP) in the pathogenesis of type 2 diabetes and related traits. The primary role of GKRP is to bind and inhibit hepatic glucokinase (GCK), a critically important protein in human health and disease that exerts a significant degree of control over glucose metabolism. As activation of GCK has been associated with improved glucose tolerance, perturbation of the GCK-GKRP interaction represents a potential therapeutic target for pharmacological modulation. Recent structural and kinetic advances are beginning to provide insight into the interaction of these two proteins. However, tools to comprehensively assess the GCK-GKRP interaction, particularly in the context of small molecules, would be a valuable resource. We therefore developed three robust and miniaturized assays for assessing the interaction between recombinant human GCK and GKRP: an HTRF assay, a diaphorase-coupled assay, and a luciferase-coupled assay. The assays are complementary, featuring distinct mechanisms of detection (luminescence, fluorescence, FRET). Two assays rely on GCK enzyme activity modulation by GKRP while the FRET-based assay measures the GCK-GKRP protein-protein interaction independent of GCK enzymatic substrates and activity. All three assays are scalable to low volumes in 1536-well plate format, with robust Z’ factors (>0.7). Finally, as GKRP sequesters GCK in the hepatocyte nucleus at low glucose concentrations, we explored cellular models of GCK localization and translocation. Previous findings from freshly isolated rat hepatocytes were confirmed in cryopreserved rat hepatocytes, and we further extended this study to cryopreserved human hepatocytes. Consistent with previous reports, there were several key differences between the rat and human systems, with our results suggesting that human hepatocytes can be used to interrogate GCK translocation in response to small molecules. The assay panel developed here should help direct future investigation of the GCK-GKRP interaction in these or other physiologically relevant human systems.


Clinical Cancer Research | 2017

Matrix screen identifies synergistic combination of PARP inhibitors and nicotinamide phosphoribosyltransferase (NAMPT) inhibitors in Ewing sarcoma

Christine Heske; Mindy I. Davis; Joshua T. Baumgart; Kelli Wilson; Michael Gormally; Lu Chen; Xiaohu Zhang; Michele Ceribelli; Damien Y. Duveau; Rajarshi Guha; Marc Ferrer; Fernanda I. Arnaldez; Jiuping Ji; Huong Lan Tran; Yiping Zhang; Arnulfo Mendoza; Lee J. Helman; Craig J. Thomas

Purpose: Although many cancers are showing remarkable responses to targeted therapies, pediatric sarcomas, including Ewing sarcoma, remain recalcitrant. To broaden the therapeutic landscape, we explored the in vitro response of Ewing sarcoma cell lines against a large collection of investigational and approved drugs to identify candidate combinations. Experimental Design: Drugs displaying activity as single agents were evaluated in combinatorial (matrix) format to identify highly active, synergistic drug combinations, and combinations were subsequently validated in multiple cell lines using various agents from each class. Comprehensive metabolomic and proteomic profiling was performed to better understand the mechanism underlying the synergy. Xenograft experiments were performed to determine efficacy and in vivo mechanism. Results: Several promising candidates emerged, including the combination of small-molecule PARP and nicotinamide phosphoribosyltransferase (NAMPT) inhibitors, a rational combination as NAMPTis block the rate-limiting enzyme in the production of nicotinamide adenine dinucleotide (NAD+), a necessary substrate of PARP. Mechanistic drivers of the synergistic cell killing phenotype of these combined drugs included depletion of NMN and NAD+, diminished PAR activity, increased DNA damage, and apoptosis. Combination PARPis and NAMPTis in vivo resulted in tumor regression, delayed disease progression, and increased survival. Conclusions: These studies highlight the potential of these drugs as a possible therapeutic option in treating patients with Ewing sarcoma. Clin Cancer Res; 23(23); 7301–11. ©2017 AACR.


Scientific Reports | 2017

Assessing inhibitors of mutant isocitrate dehydrogenase using a suite of pre-clinical discovery assays

Daniel J. Urban; Natalia Martínez; Mindy I. Davis; Kyle R. Brimacombe; Dorian M. Cheff; Tobie D. Lee; Mark J. Henderson; Steven A. Titus; Rajan Pragani; Jason M. Rohde; Li Liu; Yuhong Fang; Surendra Karavadhi; Pranav Shah; Olivia W. Lee; Amy Wang; Andrew L. McIver; Hongchao Zheng; Xiaodong Wang; Xin Xu; Ajit Jadhav; Anton Simeonov; Min Shen; Matthew B. Boxer; Matthew D. Hall

Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that are mutated in a variety of cancers to confer a gain-of-function activity resulting in the accumulation of an oncometabolite, D-2-hydroxyglutarate (2-HG). Accumulation of 2-HG can result in epigenetic dysregulation and a block in cellular differentiation, suggesting these mutations play a role in neoplasia. Based on its potential as a cancer target, a number of small molecule inhibitors have been developed to specifically inhibit mutant forms of IDH (mIDH1 and mIDH2). We present a comprehensive suite of in vitro preclinical drug development assays that can be used as a tool-box to identify lead compounds for mIDH drug discovery programs, as well as what we believe is the most comprehensive publically available dataset on the top mIDH inhibitors. This involved biochemical, cell-based, and tier-one ADME techniques.


Methods of Molecular Biology | 2016

Bioluminescence Methods for Assaying Kinases in Quantitative High-Throughput Screening (qHTS) Format Applied to Yes1 Tyrosine Kinase, Glucokinase, and PI5P4Kα Lipid Kinase.

Mindy I. Davis; Douglas S. Auld; James Inglese

Assays in which the detection of a biological phenomenon is coupled to the production of bioluminescence by luciferase have gained widespread use. As firefly luciferases (FLuc) and kinases share a common substrate (ATP), coupling of a kinase to FLuc allows for the amount of ATP remaining following a kinase reaction to be assessed by quantitating the amount of luminescence produced. Alternatively, the amount of ADP produced by the kinase reaction can be coupled to FLuc through a two-step process. This chapter describes the bioluminescent assays that were developed for three classes of kinases (lipid, protein, and metabolic kinases) and miniaturized to 1536-well format, enabling their use for quantitative high-throughput (qHTS) of small-molecule libraries.

Collaboration


Dive into the Mindy I. Davis's collaboration.

Top Co-Authors

Avatar

Anton Simeonov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Min Shen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Matthew B. Boxer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rajan Pragani

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Natasha Thorne

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Gross

Anschutz Medical Campus

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge