Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberly Straley is active.

Publication


Featured researches published by Kimberly Straley.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809

Fredrick Van Goor; Sabine Hadida; Peter D. J. Grootenhuis; B. Burton; Jeffrey H. Stack; Kimberly Straley; Caroline J. Decker; Mark W. Miller; Jason Mccartney; Eric R. Olson; Jeffrey J. Wine; Raymond A. Frizzell; Melissa A. Ashlock; Paul Negulescu

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that impair the function of CFTR, an epithelial chloride channel required for proper function of the lung, pancreas, and other organs. Most patients with CF carry the F508del CFTR mutation, which causes defective CFTR protein folding and processing in the endoplasmic reticulum, resulting in minimal amounts of CFTR at the cell surface. One strategy to treat these patients is to correct the processing of F508del-CFTR with small molecules. Here we describe the in vitro pharmacology of VX-809, a CFTR corrector that was advanced into clinical development for the treatment of CF. In cultured human bronchial epithelial cells isolated from patients with CF homozygous for F508del, VX-809 improved F508del-CFTR processing in the endoplasmic reticulum and enhanced chloride secretion to approximately 14% of non-CF human bronchial epithelial cells (EC50, 81 ± 19 nM), a level associated with mild CF in patients with less disruptive CFTR mutations. F508del-CFTR corrected by VX-809 exhibited biochemical and functional characteristics similar to normal CFTR, including biochemical susceptibility to proteolysis, residence time in the plasma membrane, and single-channel open probability. VX-809 was more efficacious and selective for CFTR than previously reported CFTR correctors. VX-809 represents a class of CFTR corrector that specifically addresses the underlying processing defect in F508del-CFTR.


Science | 2013

Targeted Inhibition of Mutant IDH2 in Leukemia Cells Induces Cellular Differentiation

Fang Wang; Jeremy Travins; Byron DeLaBarre; Virginie Penard-Lacronique; Stefanie Schalm; Erica Hansen; Kimberly Straley; Andrew Kernytsky; Wei Liu; Camelia Gliser; Hua Yang; Stefan Gross; Erin Artin; Véronique Saada; Elena Mylonas; Cyril Quivoron; Janeta Popovici-Muller; Jeffrey O. Saunders; Francesco G. Salituro; Shunqi Yan; Stuart Murray; Wentao Wei; Yi Gao; Lenny Dang; Marion Dorsch; Sam Agresta; David P. Schenkein; Scott A. Biller; Shinsan M. Su; Stéphane de Botton

IDHology Among the most exciting drug targets to emerge from cancer genome sequencing projects are two related metabolic enzymes, isocitrate dehydrogenases 1 and 2 (IDH1, IDH2). Mutations in the IDH1 and IDH2 genes are common in certain types of human cancer. Whether inhibition of mutant IDH activity might offer therapeutic benefits is unclear (see the Perspective by Kim and DeBerardinis). F. Wang et al. (p. 622, published online 4 April) isolated a small molecule that selectively inhibits mutant IDH2, describe the structural details of its binding to the mutant enzyme, and show that this compound suppresses the growth of patient-derived leukemia cells harboring the IDH2 mutation. Rohle et al. (p. 626, published online 4 April) show that a small molecule inhibitor of IDH1 selectively slows the growth of patient-derived brain tumor cells with the IDH1 mutation. A small molecule that inhibits a mutant enzyme in tumors slows malignant growth by inducing cancer cell differentiation. [Also see Perspective by Kim and DeBerardinis] A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.


Oncologist | 2012

Frequent Mutation of Isocitrate Dehydrogenase (IDH)1 and IDH2 in Cholangiocarcinoma Identified Through Broad-Based Tumor Genotyping

Darrell R. Borger; Kenneth K. Tanabe; Kenneth C. Fan; Hector U. Lopez; Valeria Fantin; Kimberly Straley; David P. Schenkein; Marek Ancukiewicz; Hannah M. Liebman; Eunice L. Kwak; Jeffrey W. Clark; David P. Ryan; Vikram Deshpande; Dora Dias-Santagata; Leif W. Ellisen; Andrew X. Zhu; A. John Iafrate

Cancers of origin in the gallbladder and bile ducts are rarely curable with current modalities of cancer treatment. Our clinical application of broad-based mutational profiling for patients diagnosed with a gastrointestinal malignancy has led to the novel discovery of mutations in the gene encoding isocitrate dehydrogenase 1 (IDH1) in tumors from a subset of patients with cholangiocarcinoma. A total of 287 tumors from gastrointestinal cancer patients (biliary tract, colorectal, gastroesophageal, liver, pancreatic, and small intestine carcinoma) were tested during routine clinical evaluation for 130 site-specific mutations within 15 cancer genes. Mutations were identified within a number of genes, including KRAS (35%), TP53 (22%), PIK3CA (10%), BRAF (7%), APC (6%), NRAS (3%), AKT1 (1%), CTNNB1 (1%), and PTEN (1%). Although mutations in the metabolic enzyme IDH1 were rare in the other common gastrointestinal malignancies in this series (2%), they were found in three tumors (25%) of an initial series of 12 biliary tract carcinomas. To better define IDH1 and IDH2 mutational status, an additional 75 gallbladder and bile duct cancers were examined. Combining these cohorts of biliary cancers, mutations in IDH1 and IDH2 were found only in cholangiocarcinomas of intrahepatic origin (nine of 40, 23%) and in none of the 22 extrahepatic cholangiocarcinomas and none of the 25 gallbladder carcinomas. In an analysis of frozen tissue specimens, IDH1 mutation was associated with highly elevated tissue levels of the enzymatic product 2-hydroxyglutarate. Thus, IDH1 mutation is a molecular feature of cholangiocarcinomas of intrahepatic origin. These findings define a specific metabolic abnormality in this largely incurable type of gastrointestinal cancer and present a potentially new target for therapy.


Nature Genetics | 2011

Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2.

M Fernanda Amary; Stephen Damato; Dina Halai; Malihe Eskandarpour; Fitim Berisha; Fiona Bonar; Stan McCarthy; Valeria Fantin; Kimberly Straley; Samira Lobo; Will Aston; Claire Green; Rosemary E. Gale; Roberto Tirabosco; Andrew Futreal; Peter J. Campbell; Nadège Presneau; Adrienne M. Flanagan

Ollier disease and Maffucci syndrome are characterized by multiple central cartilaginous tumors that are accompanied by soft tissue hemangiomas in Maffucci syndrome. We show that in 37 of 40 individuals with these syndromes, at least one tumor has a mutation in isocitrate dehydrogenase 1 (IDH1) or in IDH2, 65% of which result in a R132C substitution in the protein. In 18 of 19 individuals with more than one tumor analyzed, all tumors from a given individual shared the same IDH1 mutation affecting Arg132. In 2 of 12 subjects, a low level of mutated DNA was identified in non-neoplastic tissue. The levels of the metabolite 2HG were measured in a series of central cartilaginous and vascular tumors, including samples from syndromic and nonsyndromic subjects, and these levels correlated strongly with the presence of IDH1 mutations. The findings are compatible with a model in which IDH1 or IDH2 mutations represent early post-zygotic occurrences in individuals with these syndromes.


Nature | 2014

Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer

Supriya K. Saha; Christine A. Parachoniak; Krishna S. Ghanta; Julien Fitamant; Kenneth N. Ross; Mortada S. Najem; Sushma Gurumurthy; Esra A. Akbay; Daniela Sia; Helena Cornella; Oriana Miltiadous; Chad Walesky; Vikram Deshpande; Andrew X. Zhu; Katharine E. Yen; Kimberly Straley; Jeremy Travins; Janeta Popovici-Muller; Camelia Gliser; Cristina R. Ferrone; Udayan Apte; Josep M. Llovet; Kwok-Kin Wong; Sridhar Ramaswamy; Nabeel Bardeesy

Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are among the most common genetic alterations in intrahepatic cholangiocarcinoma (IHCC), a deadly liver cancer. Mutant IDH proteins in IHCC and other malignancies acquire an abnormal enzymatic activity allowing them to convert α-ketoglutarate (αKG) to 2-hydroxyglutarate (2HG), which inhibits the activity of multiple αKG-dependent dioxygenases, and results in alterations in cell differentiation, survival, and extracellular matrix maturation. However, the molecular pathways by which IDH mutations lead to tumour formation remain unclear. Here we show that mutant IDH blocks liver progenitor cells from undergoing hepatocyte differentiation through the production of 2HG and suppression of HNF-4α, a master regulator of hepatocyte identity and quiescence. Correspondingly, genetically engineered mouse models expressing mutant IDH in the adult liver show an aberrant response to hepatic injury, characterized by HNF-4α silencing, impaired hepatocyte differentiation, and markedly elevated levels of cell proliferation. Moreover, IDH and Kras mutations, genetic alterations that co-exist in a subset of human IHCCs, cooperate to drive the expansion of liver progenitor cells, development of premalignant biliary lesions, and progression to metastatic IHCC. These studies provide a functional link between IDH mutations, hepatic cell fate, and IHCC pathogenesis, and present a novel genetically engineered mouse model of IDH-driven malignancy.


Journal of Immunology | 2005

IL-Converting Enzyme/Caspase-1 Inhibitor VX-765 Blocks the Hypersensitive Response to an Inflammatory Stimulus in Monocytes from Familial Cold Autoinflammatory Syndrome Patients

Jeffrey H. Stack; Kevin Beaumont; Paul D. Larsen; Kimberly Straley; Greg Henkel; John C. R. Randle; Hal M. Hoffman

Familial cold autoinflammatory syndrome (FCAS) and the related autoinflammatory disorders, Muckle-Wells syndrome and neonatal onset multisystem inflammatory disease, are characterized by mutations in the CIAS1 gene that encodes cryopyrin, an adaptor protein involved in activation of IL-converting enzyme/caspase-1. Mutations in cryopyrin are hypothesized to result in abnormal secretion of caspase-1-dependent proinflammatory cytokines, IL-1β and IL-18. In this study, we examined cytokine secretion in PBMCs from FCAS patients and found a marked hyperresponsiveness of both IL-1β and IL-18 secretion to LPS stimulation, but no evidence of increased basal secretion of these cytokines, or alterations in basal or stimulated pro-IL-1β levels. VX-765, an orally active IL-converting enzyme/caspase-1 inhibitor, blocked IL-1β secretion with equal potency in LPS-stimulated cells from FCAS and control subjects. These results further link mutations in cryopyrin with abnormal caspase-1 activation, and support the clinical testing of caspase-1 inhibitors such as VX-765 in autoinflammatory disorders.


ACS Medicinal Chemistry Letters | 2012

Discovery of the First Potent Inhibitors of Mutant IDH1 That Lower Tumor 2-HG in Vivo

Janeta Popovici-Muller; Jeffrey O. Saunders; Francesco G. Salituro; Jeremy Travins; Shunqi Yan; Fang Zhao; Stefan Gross; Lenny Dang; Katharine E. Yen; Hua Yang; Kimberly Straley; Shengfang Jin; Kaiko Kunii; Valeria Fantin; Shunan Zhang; Qiongqun Pan; Derek Shi; Scott A. Biller; Shinsan M. Su

Optimization of a series of R132H IDH1 inhibitors from a high throughput screen led to the first potent molecules that show robust tumor 2-HG inhibition in a xenograft model. Compound 35 shows good potency in the U87 R132H cell based assay and ∼90% tumor 2-HG inhibition in the corresponding mouse xenograft model following BID dosing. The magnitude and duration of tumor 2-HG inhibition correlates with free plasma concentration.


Blood | 2013

Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia

Courtney D. DiNardo; Kathleen J. Propert; Alison W. Loren; Elisabeth Paietta; Zhuoxin Sun; Ross L. Levine; Kimberly Straley; Katharine E. Yen; Jay Patel; Samuel V. Agresta; Omar Abdel-Wahab; Alexander E. Perl; Mark R. Litzow; Jacob M. Rowe; Hillard M. Lazarus; Hugo F. Fernandez; David J. Margolis; Martin S. Tallman; Selina M. Luger; Martin Carroll

Cancer-associated isocitrate dehydrogenase (IDH) mutations produce the metabolite 2-hydroxyglutarate (2HG), but the clinical utility of 2HG has not been established. We studied whether 2HG measurements in acute myeloid leukemia (AML) patients correlate with IDH mutations, and whether diagnostic or remission 2HG measurements predict survival. Sera from 223 de novo AML patients were analyzed for 2HG concentration by reverse-phase liquid chromatography-mass spectrometry. Pretreatment 2HG levels ranged from 10 to 30 000 ng/mL and were elevated in IDH-mutants (median, 3004 ng/mL), compared to wild-type IDH (median, 61 ng/mL) (P < .0005). 2HG levels did not differ among IDH1 or IDH2 allelic variants. In receiver operating characteristic analysis, a discriminatory level of 700 ng/mL optimally segregated patients with and without IDH mutations, and on subsequent mutational analysis of the 13 IDH wild-type samples with 2HG levels >700 ng/mL, 9 were identified to have IDH mutations. IDH-mutant patients with 2HG levels >200 at complete remission had shorter overall survival compared to 2HG ≤200 ng/mL (hazard ratio, 3.9; P = .02). We establish a firm association between IDH mutations and serum 2HG concentration in AML, and confirm that serum oncometabolite measurements provide useful diagnostic and prognostic information that can improve patient selection for IDH-targeted therapies.


Blood | 2012

Prospective serial evaluation of 2-hydroxyglutarate, during treatment of newly diagnosed acute myeloid leukemia, to assess disease activity and therapeutic response

Amir T. Fathi; Hossein Sadrzadeh; Darrell R. Borger; Karen K. Ballen; Philip C. Amrein; Eyal C. Attar; Julia Foster; Meghan Burke; Hector U. Lopez; Matulis Cr; Edmonds Km; Anthony John Iafrate; Kimberly Straley; Katherine Yen; Samuel V. Agresta; David P. Schenkein; Hill C; Emadi A; Donna Neuberg; Richard Stone; Yi-Bin Chen

Mutations of genes encoding isocitrate dehydrogenase (IDH1 and IDH2) have been recently described in acute myeloid leukemia (AML). Serum and myeloblast samples from patients with IDH-mutant AML contain high levels of the metabolite 2-hydroxyglutarate (2-HG), a product of the altered IDH protein. In this prospective study, we sought to determine whether 2-HG can potentially serve as a noninvasive biomarker of disease burden through serial measurements in patients receiving conventional therapy for newly diagnosed AML. Our data demonstrate that serum, urine, marrow aspirate, and myeloblast 2-HG levels are significantly higher in IDH-mutant patients, with a correlation between baseline serum and urine 2-HG levels. Serum and urine 2-HG, along with IDH1/2-mutant allele burden in marrow, decreased with response to treatment. 2-HG decrease was more rapid with induction chemotherapy compared with DNA-methyltransferase inhibitor therapy. Our data suggest that serum or urine 2-HG may serve as noninvasive biomarkers of disease activity for IDH-mutant AML.


Blood | 2015

IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition

Andrew Kernytsky; Fang Wang; Erica Hansen; Stefanie Schalm; Kimberly Straley; Camelia Gliser; Hua Yang; Jeremy Travins; Stuart Murray; Marion Dorsch; Sam Agresta; David P. Schenkein; Scott A. Biller; Shinsan M. Su; Wei Liu; Katharine E. Yen

Mutations of IDH1 and IDH2, which produce the oncometabolite 2-hydroxyglutarate (2HG), have been identified in several tumors, including acute myeloid leukemia. Recent studies have shown that expression of the IDH mutant enzymes results in high levels of 2HG and a block in cellular differentiation that can be reversed with IDH mutant-specific small-molecule inhibitors. To further understand the role of IDH mutations in cancer, we conducted mechanistic studies in the TF-1 IDH2 R140Q erythroleukemia model system and found that IDH2 mutant expression caused both histone and genomic DNA methylation changes that can be reversed when IDH2 mutant activity is inhibited. Specifically, histone hypermethylation is rapidly reversed within days, whereas reversal of DNA hypermethylation proceeds in a progressive manner over the course of weeks. We identified several gene signatures implicated in tumorigenesis of leukemia and lymphoma, indicating a selective modulation of relevant cancer genes by IDH mutations. As methylation of DNA and histones is closely linked to mRNA expression and differentiation, these results indicate that IDH2 mutant inhibition may function as a cancer therapy via histone and DNA demethylation at genes involved in differentiation and tumorigenesis.

Collaboration


Dive into the Kimberly Straley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton Simeonov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Matthew B. Boxer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Min Shen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mindy I. Davis

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge