Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ming Keat Sng is active.

Publication


Featured researches published by Ming Keat Sng.


Blood | 2011

ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters

Royston-Luke Huang; Ziqiang Teo; Han Chung Chong; Pengcheng Zhu; Ming Jie Tan; Chek Kun Tan; Chee Ren Ivan Lam; Ming Keat Sng; David Tai Leong; Suet-Mien Tan; Sander Kersten; J. Ding; Hoi-Yeung Li; Nguan Soon Tan

Vascular disruption induced by interactions between tumor-secreted permeability factors and adhesive proteins on endothelial cells facilitates metastasis. The role of tumor-secreted C-terminal fibrinogen-like domain of angiopoietin-like 4 (cANGPTL4) in vascular leakiness and metastasis is controversial because of the lack of understanding of how cANGPTL4 modulates vascular integrity. Here, we show that cANGPTL4 instigated the disruption of endothelial continuity by directly interacting with 3 novel binding partners, integrin α5β1, VE-cadherin, and claudin-5, in a temporally sequential manner, thus facilitating metastasis. We showed that cANGPTL4 binds and activates integrin α5β1-mediated Rac1/PAK signaling to weaken cell-cell contacts. cANGPTL4 subsequently associated with and declustered VE-cadherin and claudin-5, leading to endothelial disruption. Interfering with the formation of these cANGPTL4 complexes delayed vascular disruption. In vivo vascular permeability and metastatic assays performed using ANGPTL4-knockout and wild-type mice injected with either control or ANGPTL4-knockdown tumors confirmed that cANGPTL4 induced vascular leakiness and facilitated lung metastasis in mice. Thus, our findings elucidate how cANGPTL4 induces endothelial disruption. Our findings have direct implications for targeting cANGPTL4 to treat cancer and other vascular pathologies.


Molecular Cancer Research | 2012

Emerging roles of angiopoietin-like 4 in human cancer.

Ming Jie Tan; Ziqiang Teo; Ming Keat Sng; Pengcheng Zhu; Nguan Soon Tan

Angiopoietin-like 4 (ANGPTL4) is best known for its role as an adipokine involved in the regulation of lipid and glucose metabolism. The characterization of ANGPTL4 as an adipokine is largely due to our limited understanding of the interaction partners of ANGPTL4 and how ANGPTL4 initiates intracellular signaling. Recent findings have revealed a critical role for ANGPTL4 in cancer growth and progression, anoikis resistance, altered redox regulation, angiogenesis, and metastasis. Emerging evidence suggests that ANGPTL4 function may be drastically altered depending on the proteolytic processing and posttranslational modifications of ANGPTL4, which may clarify several conflicting roles of ANGPTL4 in different cancers. Although the N-terminal coiled-coil region of ANGPTL4 has been largely responsible for the endocrine regulatory role in lipid metabolism, insulin sensitivity, and glucose homeostasis, it has now emerged that the COOH-terminal fibrinogen-like domain of ANGPTL4 may be a key regulator in the multifaceted signaling during cancer development. New insights into the mechanistic action of this functional domain have opened a new chapter into the possible clinical application of ANGPTL4 as a promising candidate for clinical intervention in the fight against cancer. This review summarizes our current understanding of ANGPTL4 in cancer and highlights areas that warrant further investigation. A better understanding of the underlying cellular and molecular mechanisms of ANGPTL4 will reveal novel insights into other aspects of tumorigenesis and the potential therapeutic value of ANGPTL4. Mol Cancer Res; 10(6); 677–88. ©2012 AACR.


Journal of Controlled Release | 2015

Early controlled release of peroxisome proliferator-activated receptor β/δ agonist GW501516 improves diabetic wound healing through redox modulation of wound microenvironment.

Xiaoling Wang; Ming Keat Sng; Selin Foo; Han Chung Chong; Wei Li Lee; Mark Boon Yang Tang; Kee Woei Ng; Baiwen Luo; Cleo Choong; Marcus Thien Chong Wong; Benny Meng Kiat Tong; Shunsuke Chiba; Say Chye Joachim Loo; Pengcheng Zhu; Nguan Soon Tan

Diabetic wounds are imbued with an early excessive and protracted reactive oxygen species production. Despite the studies supporting PPARβ/δ as a valuable pharmacologic wound-healing target, the therapeutic potential of PPARβ/δ agonist GW501516 (GW) as a wound healing drug was never investigated. Using topical application of polymer-encapsulated GW, we revealed that different drug release profiles can significantly influence the therapeutic efficacy of GW and consequently diabetic wound closure. We showed that double-layer encapsulated GW microparticles (PLLA:PLGA:GW) provided an earlier and sustained dose of GW to the wound and reduced the oxidative wound microenvironment to accelerate healing, in contrast to single-layered PLLA:GW microparticles. The underlying mechanism involved an early GW-mediated activation of PPARβ/δ that stimulated GPx1 and catalase expression in fibroblasts. GPx1 and catalase scavenged excessive H2O2 accumulation in diabetic wound beds, prevented H2O2-induced ECM modification and facilitated keratinocyte migration. The microparticles with early and sustained rate of GW release had better therapeutic wound healing activity. The present study underscores the importance of drug release kinetics on the therapeutic efficacy of the drug and warrants investigations to better appreciate the full potential of controlled drug release.


Cell Death and Disease | 2017

Cancer-associated fibroblasts enact field cancerization by promoting extratumoral oxidative stress

Jeremy Soon Kiat Chan; Ming Jie Tan; Ming Keat Sng; Ziqiang Teo; Terri Phua; Chee Chong Choo; Liang Li; Pengcheng Zhu; Nguan Soon Tan

Histological inspection of visually normal tissue adjacent to neoplastic lesions often reveals multiple foci of cellular abnormalities. This suggests the presence of a regional carcinogenic signal that spreads oncogenic transformation and field cancerization. We observed an abundance of mutagenic reactive oxygen species in the stroma of cryosectioned patient tumor biopsies, indicative of extratumoral oxidative stress. Diffusible hydrogen peroxide (H2O2) was elevated in the conditioned medium of cultured skin epithelia at various stages of oncogenic transformation, and H2O2 production increased with greater tumor-forming and metastatic capacity of the studied cell lines. Explanted cancer-associated fibroblasts (CAFs) also had higher levels of H2O2 secretion compared with normal fibroblasts (FIBs). These results suggest that extracellular H2O2 acts as a field effect carcinogen. Indeed, H2O2-treated keratinocytes displayed decreased phosphatase and tensin homolog (PTEN) and increased Src activities because of oxidative modification. Furthermore, treating FIBs with CAF-conditioned medium or exogenous H2O2 resulted in the acquisition of an oxidative, CAF-like state. In vivo, the proliferative potential and invasiveness of composite tumor xenografts comprising cancerous or non-tumor-forming epithelia with CAFs and FIBs could be attenuated by the presence of catalase. Importantly, we showed that oxidatively transformed FIBs isolated from composite tumor xenografts retained their ability to promote tumor growth and aggressiveness when adoptively transferred into new xenografts. Higher H2O2 production by CAFs was contingent on impaired TGFβ signaling leading to the suppression of the antioxidant enzyme glutathione peroxidase 1 (GPX1). Finally, we detected a reduction in Smad3, TAK1 and TGFβRII expression in a cohort of 197 clinical squamous cell carcinoma (SCC) CAFs, suggesting that impaired stromal TGFβ signaling may be a clinical feature of SCC. Our study indicated that CAFs and cancer cells engage redox signaling circuitries and mitogenic signaling to reinforce their reciprocal relationship, suggesting that future anticancer approaches should simultaneously target ligand receptor and redox-mediated pathways.


Oncogene | 2018

Targeting nuclear receptors in cancer-associated fibroblasts as concurrent therapy to inhibit development of chemoresistant tumors

Jeremy Soon Kiat Chan; Ming Keat Sng; Ziqiang Teo; H C Chong; J S Twang; Nguan Soon Tan

Most anticancer therapies to date focus on druggable features of tumor epithelia. Despite the increasing repertoire of treatment options, patient responses remain varied. Moreover, tumor resistance and relapse remain persistent clinical challenges. These observations imply an incomplete understanding of tumor heterogeneity. The tumor microenvironment is a major determinant of disease progression and therapy outcome. Cancer-associated fibroblasts (CAFs) are the dominant cell type within the reactive stroma of tumors. They orchestrate paracrine pro-tumorigenic signaling with adjacent tumor cells, thus exacerbating the hallmarks of cancer and accelerating tumor malignancy. Although CAF-derived soluble factors have been investigated for tumor stroma-directed therapy, the underlying transcriptional programs that enable the oncogenic functions of CAFs remain poorly understood. Nuclear receptors (NRs), a large family of ligand-responsive transcription factors, are pharmacologically viable targets for the suppression of CAF-facilitated oncogenesis. In this study, we defined the expression profiles of NRs in CAFs from clinical cutaneous squamous cell carcinoma (SCC) biopsies. We further identified a cluster of driver NRs in CAFs as important modifiers of CAF function with profound influence on cancer cell invasiveness, proliferation, drug resistance, energy metabolism and oxidative stress status. Importantly, guided by the NR profile of CAFs, retinoic acid receptor β and androgen receptor antagonists were identified for concurrent therapy with cisplatin, resulting in the inhibition of chemoresistance in recurred SCC:CAF xenografts. Our work demonstrates that treatments targeting both the tumor epithelia and the surrounding CAFs can extend the efficacy of conventional chemotherapy.


Scientific Reports | 2017

Angiopoietin-like 4 Mediates Colonic Inflammation by Regulating Chemokine Transcript Stability via Tristetraprolin

Terri Phua; Ming Keat Sng; Eddie Han Pin Tan; Dickson Shao Liang Chee; Yinliang Li; Jonathan Wei Kiat Wee; Ziqiang Teo; Jeremy Soon Kiat Chan; Maegan Miang Kee Lim; Chek Kun Tan; Pengcheng Zhu; Velmurugesan Arulampalam; Nguan Soon Tan

Many gastrointestinal diseases exhibit a protracted and aggravated inflammatory response that can lead to hypercytokinaemia, culminating in extensive tissue damage. Recently, angiopoietin-like 4 (ANGPTL4) has been implicated in many inflammation-associated diseases. However, how ANGPTL4 regulates colonic inflammation remains unclear. Herein, we show that ANGPTL4 deficiency in mice (ANGPTL4−/−) exacerbated colonic inflammation induced by dextran sulfate sodium (DSS) or stearic acid. Microbiota was similar between the two genotypes prior DSS challenge. A microarray gene expression profile of the colon from DSS-treated ANGPTL4−/− mice was enriched for genes involved in leukocyte migration and infiltration, and showed a close association to inflamed ulcerative colitis (UC), whereas the profile from ANGPTL4+/+ littermates resembled that of non-inflamed UC biopsies. Bone marrow transplantation demonstrates the intrinsic role of colonic ANGPTL4 in regulating leukocyte infiltration during DSS-induced inflammation. Using immortalized human colon epithelial cells, we revealed that the ANGPTL4-mediated upregulation of tristetraprolin expression operates through CREB and NF-κB transcription factors, which in turn, regulates the stability of chemokines. Together, our findings suggest that ANGPTL4 protects against acute colonic inflammation and that its absence exacerbates the severity of inflammation. Our findings emphasize the importance of ANGPTL4 as a novel target for therapy in regulating and attenuating inflammation.


Scientific Reports | 2016

Conditional knockout of N-WASP in mouse fibroblast caused keratinocyte hyper proliferation and enhanced wound closure

Neeraj Jain; Pazhanichamy Kalailingam; Kai Wei Tan; Hui Bing Tan; Ming Keat Sng; Jeremy Soon Kiat Chan; Nguan Soon Tan; Thirumaran Thanabalu

Neural-Wiskott Aldrich Syndrome Protein (N-WASP) is expressed ubiquitously, regulates actin polymerization and is essential during mouse development. We have previously shown that N-WASP is critical for cell-ECM adhesion in fibroblasts. To characterize the role of N-WASP in fibroblast for skin development, we generated a conditional knockout mouse model in which fibroblast N-WASP was ablated using the Cre recombinase driven by Fibroblast Specific Protein promoter (Fsp-Cre). N-WASPFKO (N-WASPfl/fl; Fsp-cre) were born following Mendelian genetics, survived without any visible abnormalities for more than 1 year and were sexually reproductive, suggesting that expression of N-WASP in fibroblast is not critical for survival under laboratory conditions. Histological sections of N-WASPFKO mice skin (13 weeks old) showed thicker epidermis with higher percentage of cells staining for proliferation marker (PCNA), suggesting that N-WASP deficient fibroblasts promote keratinocyte proliferation. N-WASPFKO mice skin had elevated collagen content, elevated expression of FGF7 (keratinocyte growth factor) and TGFβ signaling proteins. Wound healing was faster in N-WASPFKO mice compared to control mice and N-WASP deficient fibroblasts were found to have enhanced collagen gel contraction properties. These results suggest that N-WASP deficiency in fibroblasts improves wound healing by growth factor-mediated enhancement of keratinocyte proliferation and increased wound contraction in mice.


Histology and Histopathology | 2014

Probing for protein-protein interactions during cell migration: limitations and challenges.

Jeremy Soon Kiat Chan; Zi Qiang Teo; Ming Keat Sng; Nguan Soon Tan

Cellular migration is a fundamental biological process occurring as early as embryogenesis to the pathological state of cancer metastasis. Nearly all cellular migrations involve an extracellular signal that is transduced internally by members of a signalling cascade. These signal transduction events are driven by protein-protein interactions (PPIs) that coordinate intracellular activities to enable a cell to migrate. Understanding these PPIs will provide valuable insight into how cellular migration can be modulated perhaps towards a therapeutic end. Histologically, not many techniques are available to demonstrate PPIs. Contrasting agents only demonstrate the presence of a particular protein, and perhaps its co-localisation with another protein. Yet, co-localisation need not necessarily indicate physical interaction between the two proteins. In this review, we highlight four commonly used methods that continue to expand our understanding of PPIs underlying cell migration: co-immunoprecipitation, bimolecular fluorescence complementation, proximity ligation assay and surface plasmon resonance. The methods discussed herein allow for the study of PPIs in a wide variety of biological samples, including cell lysates, live cells, fixed cells and tissues, enabling the quantification of endogenous PPIs and exploration of the nature of PPIs. We also include a rudimentary framework for researchers to decide which experimental method best suits their research goals.


Oncogene | 2017

Elevation of adenylate energy charge by angiopoietin-like 4 enhances epithelial–mesenchymal transition by inducing 14-3-3γ expression

Ziqiang Teo; Ming Keat Sng; Jeremy Soon Kiat Chan; Maegan Miang Kee Lim; Yinliang Li; Luchun Li; Terri Phua; J. Y. H. Lee; Zhen Wei Tan; Pengcheng Zhu; Nguan Soon Tan

Metastatic cancer cells acquire energy-intensive processes including increased invasiveness and chemoresistance. However, how the energy demand is met and the molecular drivers that coordinate an increase in cellular metabolic activity to drive epithelial–mesenchymal transition (EMT), the first step of metastasis, remain unclear. Using different in vitro and in vivo EMT models with clinical patient’s samples, we showed that EMT is an energy-demanding process fueled by glucose metabolism-derived adenosine triphosphate (ATP). We identified angiopoietin-like 4 (ANGPTL4) as a key player that coordinates an increase in cellular energy flux crucial for EMT via an ANGPTL4/14-3-3γ signaling axis. This augmented cellular metabolic activity enhanced metastasis. ANGPTL4 knockdown suppresses an adenylate energy charge elevation, delaying EMT. Using an in vivo dual-inducible EMT model, we found that ANGPTL4 deficiency reduces cancer metastasis to the lung and liver. Unbiased kinase inhibitor screens and Ingenuity Pathway Analysis revealed that ANGPTL4 regulates the expression of 14-3-3γ adaptor protein via the phosphatidylinositol-3-kinase/AKT and mitogen-activated protein kinase signaling pathways that culminate to activation of transcription factors, CREB, cFOS and STAT3. Using a different mode of action, as compared with protein kinases, the ANGPTL4/14-3-3γ signaling axis consolidated cellular bioenergetics and stabilized critical EMT proteins to coordinate energy demand and enhanced EMT competency and metastasis, through interaction with specific phosphorylation signals on target proteins.


Scientific Reports | 2017

Angiopoietin-like 4 induces a β-catenin-mediated upregulation of ID3 in fibroblasts to reduce scar collagen expression

Ziqiang Teo; Jeremy Soon Kiat Chan; Han Chung Chong; Ming Keat Sng; Chee Chong Choo; Glendon Zhi Ming Phua; Daniel Jin Rong Teo; Pengcheng Zhu; Cleo Choong; Marcus Thien Chong Wong; Nguan Soon Tan

In adult skin wounds, collagen expression rapidly re-establishes the skin barrier, although the resultant scar is aesthetically and functionally inferior to unwounded tissue. Although TGFβ signaling and fibroblasts are known to be responsible for scar-associated collagen production, there are currently no prophylactic treatments for scar management. Fibroblasts in crosstalk with wound keratinocytes orchestrate collagen expression, although the precise paracrine pathways involved remain poorly understood. Herein, we showed that the matricellular protein, angiopoietin-like 4 (ANGPTL4), accelerated wound closure and reduced collagen expression in diabetic and ANGPTL4-knockout mice. Similar observations were made in wild-type rat wounds. Using human fibroblasts as a preclinical model for mechanistic studies, we systematically elucidated that ANGPTL4 binds to cadherin-11, releasing membrane-bound β-catenin which translocate to the nucleus and transcriptionally upregulate the expression of Inhibitor of DNA-binding/differentiation protein 3 (ID3). ID3 interacts with scleraxis, a basic helix-loop-helix transcription factor, to inhibit scar-associated collagen types 1α2 and 3α1 production by fibroblasts. We also showed ANGPTL4 interaction with cadherin-11 in human scar tissue. Our findings highlight a central role for matricellular proteins such as ANGPTL4 in the attenuation of collagen expression and may have a broader implication for other fibrotic pathologies.

Collaboration


Dive into the Ming Keat Sng's collaboration.

Top Co-Authors

Avatar

Nguan Soon Tan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Jeremy Soon Kiat Chan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Pengcheng Zhu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Ziqiang Teo

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Chek Kun Tan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Eddie Han Pin Tan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Terri Phua

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Han Chung Chong

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Ming Jie Tan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Walter Wahli

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge