Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ming-Ming Cheng is active.

Publication


Featured researches published by Ming-Ming Cheng.


european conference on computer vision | 2016

The Visual Object Tracking VOT2014 Challenge Results

Matej Kristan; Roman P. Pflugfelder; Aleš Leonardis; Jiri Matas; Luka Cehovin; Georg Nebehay; Tomas Vojir; Gustavo Fernández; Alan Lukezic; Aleksandar Dimitriev; Alfredo Petrosino; Amir Saffari; Bo Li; Bohyung Han; CherKeng Heng; Christophe Garcia; Dominik Pangersic; Gustav Häger; Fahad Shahbaz Khan; Franci Oven; Horst Bischof; Hyeonseob Nam; Jianke Zhu; Jijia Li; Jin Young Choi; Jin-Woo Choi; João F. Henriques; Joost van de Weijer; Jorge Batista; Karel Lebeda

Visual tracking has attracted a significant attention in the last few decades. The recent surge in the number of publications on tracking-related problems have made it almost impossible to follow the developments in the field. One of the reasons is that there is a lack of commonly accepted annotated data-sets and standardized evaluation protocols that would allow objective comparison of different tracking methods. To address this issue, the Visual Object Tracking (VOT) workshop was organized in conjunction with ICCV2013. Researchers from academia as well as industry were invited to participate in the first VOT2013 challenge which aimed at single-object visual trackers that do not apply pre-learned models of object appearance (model-free). Presented here is the VOT2013 benchmark dataset for evaluation of single-object visual trackers as well as the results obtained by the trackers competing in the challenge. In contrast to related attempts in tracker benchmarking, the dataset is labeled per-frame by visual attributes that indicate occlusion, illumination change, motion change, size change and camera motion, offering a more systematic comparison of the trackers. Furthermore, we have designed an automated system for performing and evaluating the experiments. We present the evaluation protocol of the VOT2013 challenge and the results of a comparison of 27 trackers on the benchmark dataset. The dataset, the evaluation tools and the tracker rankings are publicly available from the challenge website (http://votchallenge.net).


international conference on computer vision | 2013

Efficient Salient Region Detection with Soft Image Abstraction

Ming-Ming Cheng; Jonathan Warrell; Wen-Yan Lin; Shuai Zheng; Vibhav Vineet; Nigel Crook

Detecting visually salient regions in images is one of the fundamental problems in computer vision. We propose a novel method to decompose an image into large scale perceptually homogeneous elements for efficient salient region detection, using a soft image abstraction representation. By considering both appearance similarity and spatial distribution of image pixels, the proposed representation abstracts out unnecessary image details, allowing the assignment of comparable saliency values across similar regions, and producing perceptually accurate salient region detection. We evaluate our salient region detection approach on the largest publicly available dataset with pixel accurate annotations. The experimental results show that the proposed method outperforms 18 alternate methods, reducing the mean absolute error by 25.2% compared to the previous best result, while being computationally more efficient.


IEEE Transactions on Image Processing | 2015

Salient Object Detection: A Benchmark

Ali Borji; Ming-Ming Cheng; Huaizu Jiang; Jia Li

We extensively compare, qualitatively and quantitatively, 41 state-of-the-art models (29 salient object detection, 10 fixation prediction, 1 objectness, and 1 baseline) over seven challenging data sets for the purpose of benchmarking salient object detection and segmentation methods. From the results obtained so far, our evaluation shows a consistent rapid progress over the last few years in terms of both accuracy and running time. The top contenders in this benchmark significantly outperform the models identified as the best in the previous benchmark conducted three years ago. We find that the models designed specifically for salient object detection generally work better than models in closely related areas, which in turn provides a precise definition and suggests an appropriate treatment of this problem that distinguishes it from other problems. In particular, we analyze the influences of center bias and scene complexity in model performance, which, along with the hard cases for the state-of-the-art models, provide useful hints toward constructing more challenging large-scale data sets and better saliency models. Finally, we propose probable solutions for tackling several open problems, such as evaluation scores and data set bias, which also suggest future research directions in the rapidly growing field of salient object detection.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2016

Struck: Structured Output Tracking with Kernels

Sam Hare; Stuart Golodetz; Amir Saffari; Vibhav Vineet; Ming-Ming Cheng; Stephen L. Hicks; Philip H. S. Torr

Adaptive tracking-by-detection methods are widely used in computer vision for tracking arbitrary objects. Current approaches treat the tracking problem as a classification task and use online learning techniques to update the object model. However, for these updates to happen one needs to convert the estimated object position into a set of labelled training examples, and it is not clear how best to perform this intermediate step. Furthermore, the objective for the classifier (label prediction) is not explicitly coupled to the objective for the tracker (estimation of object position). In this paper, we present a framework for adaptive visual object tracking based on structured output prediction. By explicitly allowing the output space to express the needs of the tracker, we avoid the need for an intermediate classification step. Our method uses a kernelised structured output support vector machine (SVM), which is learned online to provide adaptive tracking. To allow our tracker to run at high frame rates, we (a) introduce a budgeting mechanism that prevents the unbounded growth in the number of support vectors that would otherwise occur during tracking, and (b) show how to implement tracking on the GPU. Experimentally, we show that our algorithm is able to outperform state-of-the-art trackers on various benchmark videos. Additionally, we show that we can easily incorporate additional features and kernels into our framework, which results in increased tracking performance.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2017

STC: A Simple to Complex Framework for Weakly-Supervised Semantic Segmentation

Yunchao Wei; Xiaodan Liang; Yunpeng Chen; Xiaohui Shen; Ming-Ming Cheng; Jiashi Feng; Yao Zhao; Shuicheng Yan

Recently, significant improvement has been made on semantic object segmentation due to the development of deep convolutional neural networks (DCNNs). Training such a DCNN usually relies on a large number of images with pixel-level segmentation masks, and annotating these images is very costly in terms of both finance and human effort. In this paper, we propose a simple to complex (STC) framework in which only image-level annotations are utilized to learn DCNNs for semantic segmentation. Specifically, we first train an initial segmentation network called Initial-DCNN with the saliency maps of simple images (i.e., those with a single category of major object(s) and clean background). These saliency maps can be automatically obtained by existing bottom-up salient object detection techniques, where no supervision information is needed. Then, a better network called Enhanced-DCNN is learned with supervision from the predicted segmentation masks of simple images based on the Initial-DCNN as well as the image-level annotations. Finally, more pixel-level segmentation masks of complex images (two or more categories of objects with cluttered background), which are inferred by using Enhanced-DCNN and image-level annotations, are utilized as the supervision information to learn the Powerful-DCNN for semantic segmentation. Our method utilizes 40K simple images from Flickr.com and 10K complex images from PASCAL VOC for step-wisely boosting the segmentation network. Extensive experimental results on PASCAL VOC 2012 segmentation benchmark well demonstrate the superiority of the proposed STC framework compared with other state-of-the-arts.Recently, significant improvement has been made on semantic object segmentation due to the development of deep convolutional neural networks (DCNNs). Training such a DCNN usually relies on a large number of images with pixel-level segmentation masks, and annotating these images is very costly in terms of both finance and human effort. In this paper, we propose a simple to complex (STC) framework in which only image-level annotations are utilized to learn DCNNs for semantic segmentation. Specifically, we first train an initial segmentation network called Initial-DCNN with the saliency maps of simple images (i.e., those with a single category of major object(s) and clean background). These saliency maps can be automatically obtained by existing bottom-up salient object detection techniques, where no supervision information is needed. Then, a better network called Enhanced-DCNN is learned with supervision from the predicted segmentation masks of simple images based on the Initial-DCNN as well as the image-level annotations. Finally, more pixel-level segmentation masks of complex images (two or more categories of objects with cluttered background), which are inferred by using Enhanced-DCNN and image-level annotations, are utilized as the supervision information to learn the Powerful-DCNN for semantic segmentation. Our method utilizes 40K simple images from Flickr.com and 10K complex images from PASCAL VOC for step-wisely boosting the segmentation network. Extensive experimental results on PASCAL VOC 2012 segmentation benchmark well demonstrate the superiority of the proposed STC framework compared with other state-of-the-arts.


computer vision and pattern recognition | 2017

Deeply Supervised Salient Object Detection with Short Connections

Qibin Hou; Ming-Ming Cheng; Xiaowei Hu; Ali Borji; Zhuowen Tu; Philip H. S. Torr

Recent progress on salient object detection is substantial, benefiting mostly from the explosive development of Convolutional Neural Networks (CNNs). Semantic segmentation and salient object detection algorithms developed lately have been mostly based on Fully Convolutional Neural Networks (FCNs). There is still a large room for improvement over the generic FCN models that do not explicitly deal with the scale-space problem. The Holistically-Nested Edge Detector (HED) provides a skip-layer structure with deep supervision for edge and boundary detection, but the performance gain of HED on saliency detection is not obvious. In this paper, we propose a new salient object detection method by introducing short connections to the skip-layer structures within the HED architecture. Our framework takes full advantage of multi-level and multi-scale features extracted from FCNs, providing more advanced representations at each layer, a property that is critically needed to perform segment detection. Our method produces state-of-the-art results on 5 widely tested salient object detection benchmarks, with advantages in terms of efficiency (0.08 seconds per image), effectiveness, and simplicity over the existing algorithms. Beyond that, we conduct an exhaustive analysis of the role of training data on performance. We provide a training set for future research and fair comparisons.


computer vision and pattern recognition | 2017

Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach

Yunchao Wei; Jiashi Feng; Xiaodan Liang; Ming-Ming Cheng; Yao Zhao; Shuicheng Yan

We investigate a principle way to progressively mine discriminative object regions using classification networks to address the weakly-supervised semantic segmentation problems. Classification networks are only responsive to small and sparse discriminative regions from the object of interest, which deviates from the requirement of the segmentation task that needs to localize dense, interior and integral regions for pixel-wise inference. To mitigate this gap, we propose a new adversarial erasing approach for localizing and expanding object regions progressively. Starting with a single small object region, our proposed approach drives the classification network to sequentially discover new and complement object regions by erasing the current mined regions in an adversarial manner. These localized regions eventually constitute a dense and complete object region for learning semantic segmentation. To further enhance the quality of the discovered regions by adversarial erasing, an online prohibitive segmentation learning approach is developed to collaborate with adversarial erasing by providing auxiliary segmentation supervision modulated by the more reliable classification scores. Despite its apparent simplicity, the proposed approach achieves 55.0% and 55.7% mean Intersection-over-Union (mIoU) scores on PASCAL VOC 2012 val and test sets, which are the new state-of-the-arts.


computer vision and pattern recognition | 2014

Dense Semantic Image Segmentation with Objects and Attributes

Shuai Zheng; Ming-Ming Cheng; Jonathan Warrell; Paul Sturgess; Vibhav Vineet; Carsten Rother; Philip H. S. Torr

The concepts of objects and attributes are both important for describing images precisely, since verbal descriptions often contain both adjectives and nouns (e.g. I see a shiny red chair). In this paper, we formulate the problem of joint visual attribute and object class image segmentation as a dense multi-labelling problem, where each pixel in an image can be associated with both an object-class and a set of visual attributes labels. In order to learn the label correlations, we adopt a boosting-based piecewise training approach with respect to the visual appearance and co-occurrence cues. We use a filtering-based mean-field approximation approach for efficient joint inference. Further, we develop a hierarchical model to incorporate region-level object and attribute information. Experiments on the aPASCAL, CORE and attribute augmented NYU indoor scenes datasets show that the proposed approach is able to achieve state-of-the-art results.


ACM Transactions on Graphics | 2015

SemanticPaint: Interactive 3D Labeling and Learning at your Fingertips

Julien P. C. Valentin; Vibhav Vineet; Ming-Ming Cheng; David Kim; Jamie Shotton; Pushmeet Kohli; Matthias Nießner; Antonio Criminisi; Shahram Izadi; Philip H. S. Torr

We present a new interactive and online approach to 3D scene understanding. Our system, SemanticPaint, allows users to simultaneously scan their environment whilst interactively segmenting the scene simply by reaching out and touching any desired object or surface. Our system continuously learns from these segmentations, and labels new unseen parts of the environment. Unlike offline systems where capture, labeling, and batch learning often take hours or even days to perform, our approach is fully online. This provides users with continuous live feedback of the recognition during capture, allowing to immediately correct errors in the segmentation and/or learning—a feature that has so far been unavailable to batch and offline methods. This leads to models that are tailored or personalized specifically to the users environments and object classes of interest, opening up the potential for new applications in augmented reality, interior design, and human/robot navigation. It also provides the ability to capture substantial labeled 3D datasets for training large-scale visual recognition systems.


computer vision and pattern recognition | 2017

Richer Convolutional Features for Edge Detection

Yun Liu; Ming-Ming Cheng; Xiaowei Hu; Kai Wang; Xiang Bai

In this paper, we propose an accurate edge detector using richer convolutional features (RCF). Since objects in natural images possess various scales and aspect ratios, learning the rich hierarchical representations is very critical for edge detection. CNNs have been proved to be effective for this task. In addition, the convolutional features in CNNs gradually become coarser with the increase of the receptive fields. According to these observations, we attempt to adopt richer convolutional features in such a challenging vision task. The proposed network fully exploits multiscale and multilevel information of objects to perform the image-to-image prediction by combining all the meaningful convolutional features in a holistic manner. Using VGG16 network, we achieve state-of-the-art performance on several available datasets. When evaluating on the well-known BSDS500 benchmark, we achieve ODS F-measure of 0.811 while retaining a fast speed (8 FPS). Besides, our fast version of RCF achieves ODS F-measure of 0.806 with 30 FPS.

Collaboration


Dive into the Ming-Ming Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Borji

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vibhav Vineet

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar

Yunchao Wei

Beijing Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Wen-Yan Lin

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge