Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ming-Yu Fang is active.

Publication


Featured researches published by Ming-Yu Fang.


Journal of Medicinal Chemistry | 2010

Design and Synthesis of Tetrahydropyridothieno[2,3-d]pyrimidine Scaffold Based Epidermal Growth Factor Receptor (EGFR) Kinase Inhibitors: The Role of Side Chain Chirality and Michael Acceptor Group for Maximal Potency

Chia-Hsien Wu; Mohane Selvaraj Coumar; Chang-Ying Chu; Wen-Hsing Lin; Yi-Rong Chen; Chiung-Tong Chen; Hui-Yi Shiao; Shaik Rafi; Sing-Yi Wang; Hui Hsu; Chun-Hwa Chen; Chun-Yu Chang; Teng-Yuan Chang; Tzu-Wen Lien; Ming-Yu Fang; Kai-Chia Yeh; Ching-Ping Chen; Teng-Kuang Yeh; Su-Huei Hsieh; John T.-A. Hsu; Chun-Chen Liao; Yu-Sheng Chao; Hsing-Pang Hsieh

HTS hit 7 was modified through hybrid design strategy to introduce a chiral side chain followed by introduction of Michael acceptor group to obtain potent EGFR kinase inhibitors 11 and 19. Both 11 and 19 showed over 3 orders of magnitude enhanced HCC827 antiproliferative activity compared to HTS hit 7 and also inhibited gefitinib-resistant double mutant (DM, T790M/L858R) EGFR kinase at nanomolar concentration. Moreover, treatment with 19 shrinked tumor in nude mice xenograft model.


Journal of Medicinal Chemistry | 2010

Fast-Forwarding Hit to Lead: Aurora and Epidermal Growth Factor Receptor Kinase Inhibitor Lead Identification

Mohane Selvaraj Coumar; Chang-Ying Chu; Cheng-Wei Lin; Hui-Yi Shiao; Yun-Lung Ho; Randheer Reddy; Wen-Hsing Lin; Chun-Hwa Chen; Yi-Hui Peng; Jiun-Shyang Leou; Tzu-Wen Lien; Chin-Ting Huang; Ming-Yu Fang; Szu-Huei Wu; Jian-Sung Wu; Santhosh Kumar Chittimalla; Jen-Shin Song; John T.-A. Hsu; Su-Ying Wu; Chun-Chen Liao; Yu-Sheng Chao; Hsing-Pang Hsieh

A focused library of furanopyrimidine (350 compounds) was rapidly synthesized in parallel reactors and in situ screened for Aurora and epidermal growth factor receptor (EGFR) kinase activity, leading to the identification of some interesting hits. On the basis of structural biology observations, the hit 1a was modified to better fit the back pocket, producing the potent Aurora inhibitor 3 with submicromolar antiproliferative activity in HCT-116 colon cancer cell line. On the basis of docking studies with EGFR hit 1s, introduction of acrylamide Michael acceptor group led to 8, which inhibited both the wild and mutant EGFR kinase and also showed antiproliferative activity in HCC827 lung cancer cell line. Furthermore, the X-ray cocrystal study of 3 and 8 in complex with Aurora and EGFR, respectively, confirmed their hypothesized binding modes. Library construction, in situ screening, and structure-based drug design (SBDD) strategy described here could be applied for the lead identification of other kinases.


Journal of Antimicrobial Chemotherapy | 2010

Inhibition of enterovirus 71 replication and the viral 3D polymerase by aurintricarboxylic acid

Hui-Chen Hung; Tzu-Chun Chen; Ming-Yu Fang; Kuei-Jung Yen; Shin-Ru Shih; John T.-A. Hsu; Ching-Ping Tseng

Abstract Objectives Enterovirus 71 (EV71) causes serious diseases in humans. The aim of this study was to examine the effects of aurintricarboxylic acid (ATA) on EV71 replication and to explore the underlying mechanism. Methods To measure the activity of ATA in inhibiting the cytopathic effect (CPE) of EV71, a cell-based neutralization (inhibition of virus-induced CPE) assay was performed. The effect of ATA was further confirmed using plaque reduction and viral yield reduction assays. A time of addition assay was performed to identify the mechanisms of ATAs anti-EV71 activity. We examined the effects of ATA on the following key steps involved in virus replication: (i) translation of the internal ribosomal entry site (IRES)-mediated viral polyprotein; (ii) the proteolytic activity of viral proteases 2A and/or 3C; and (iii) the viral 3D RNA-dependent RNA polymerase (RdRp) activity. Results In this study, ATA was found to be a potent inhibitor of the replication of EV71. In the antiviral neutralization assay, ATA exhibited inhibitory activity against EV71 (TW/4643/98) and EV71 (TW/2231/98). Plaque assay further demonstrated that ATA inhibited EV71 replication with an EC50 (effective concentration at which 50% of plaques were removed) of 2.9 µM. Studies on the mechanism of action revealed that ATA targets the early stage of the viral life cycle after viral entry. ATA was able to inhibit the RdRp activity of EV71, while neither the IRES-mediated translation of viral polyprotein nor the viral 3C protease activity was affected. Conclusions Overall, the findings in this study suggest that ATA is able to effectively inhibit EV71 replication through interfering with the viral 3D polymerase.


Antimicrobial Agents and Chemotherapy | 2012

Identification of BPR3P0128 as an Inhibitor of Cap-Snatching Activities of Influenza Virus

John T.-A. Hsu; Jiann-Yih Yeh; Ta-Jen Lin; Mei-ling Li; Ming-sian Wu; Chung-Fan Hsieh; Yao Chieh Chou; Wen-Fang Tang; Kean Seng Lau; Hui-Chen Hung; Ming-Yu Fang; Shengkai Ko; Hsing-Pang Hsieh; Jim-Tong Horng

ABSTRACT The aim of this study was to identify the antiviral mechanism of a novel compound, BPR3P0128. From a large-scale screening of a library of small compounds, BPR3P compounds were found to be potent inhibitors of influenza viral replication in Madin–Darby canine kidney (MDCK) cells. BPR3P0128 exhibited inhibitory activity against both influenza A and B viruses. The 50% inhibitory concentrations were in the range of 51 to 190 nM in MDCK cells, as measured by inhibition-of-cytopathic-effect assays. BPR3P0128 appeared to target the viral replication cycle but had no effect on viral adsorption. The inhibition of cap-dependent mRNA transcription by BPR3P0128 was more prominent with a concurrent increase in cap-independent cRNA replication in a primer extension assay, suggesting a role of BPR3P0128 in switching transcription to replication. This reduction in mRNA expression resulted from the BPR3P-mediated inhibition of the cap-dependent endoribonuclease (cap-snatching) activities of nuclear extracts containing the influenza virus polymerase complex. No inhibition of binding of 5′ viral RNA to the viral polymerase complex by this compound was detected. BPR3P0128 also effectively inhibited other RNA viruses, such as enterovirus 71 and human rhinovirus, but not DNA viruses, suggesting that BPR3P0128 targets a cellular factor(s) associated with viral PB2 cap-snatching activity. The identification of this factor(s) could help redefine the regulation of viral transcription and replication and thereby provide a potential target for antiviral chemotherapeutics.


ChemMedChem | 2010

Identification, SAR studies, and X-ray co-crystallographic analysis of a novel furanopyrimidine aurora kinase A inhibitor

Mohane Selvaraj Coumar; Ming‐Tsung Tsai; Chang-Ying Chu; Biing-Jiun Uang; Wen-Hsing Lin; Chun-Yu Chang; Teng-Yuan Chang; Jiun-Shyang Leou; Chi‐Huang Teng; Jian-Sung Wu; Ming-Yu Fang; Chun-Hwa Chen; John T.-A. Hsu; Su-Ying Wu; Yu-Sheng Chao; Hsing-Pang Hsieh

Herein we reveal a simple method for the identification of novel Aurora kinase A inhibitors through substructure searching of an in‐house compound library to select compounds for testing. A hydrazone fragment conferring Aurora kinase activity and heterocyclic rings most frequently reported in kinase inhibitors were used as substructure queries to filter the in‐house compound library collection prior to testing. Five new series of Aurora kinase inhibitors were identified through this strategy, with IC50 values ranging from ∼300 nM to ∼15 μM, by testing only 133 compounds from a database of ∼125 000 compounds. Structure–activity relationship studies and X‐ray co‐crystallographic analysis of the most potent compound, a furanopyrimidine derivative with an IC50 value of 309 nM toward Aurora kinase A, were carried out. The knowledge gained through these studies could help in the future design of potent Aurora kinase inhibitors.


Analytical Chemistry | 2012

Development of an Anti-Influenza Drug Screening Assay Targeting Nucleoproteins with Tryptophan Fluorescence Quenching

Hui-Chen Hung; Chia-Lin Liu; John T.-A. Hsu; Jim-Tong Horng; Ming-Yu Fang; Su-Ying Wu; Shau-Hua Ueng; Min-Ying Wang; Cheng-Wen Yaw; Ming-Hon Hou

Recent studies have shown that NP (nucleoprotein), which possesses multiple functions in the viral life cycle, is a new potential anti-influenza drug target. NP inhibitors reliably induce conformational changes in NPs, and these changes may confer inhibition of the influenza virus. The six conserved tryptophan residues in NP can be used as an intrinsic probe to monitor the change in fluorescence of the tryptophan residues in the protein upon binding to an NP inhibitor. In the present study, we found that the fluorescence of recombinant NP proteins was quenched following the binding of available NP inhibitors (such as nucleozin) in a concentration- and time-dependent manner, which suggests that the inhibitor induced conformational changes in the NPs. The minimal fluorescence-quenching effect and weak binding constant of nucleozin to the swine-origin influenza virus H1N1pdm09 (SOIV) NP revealed that the SOIV is resistant to nucleozin. We have used the fluorescence-quenching property of tryptophans in NPs that were bound to ligands in a 96-well-plate-based drug screen to assess the ability of promising small molecules to interact with NPs and have identified one new anti-influenza drug, CSV0C001018, with a high SI value. This convenient method for drug screening may facilitate the development of antiviral drugs that target viruses other than the influenza virus, such as HIV and HBV.


Analytical Biochemistry | 2008

A cell-based high-throughput screen for epidermal growth factor receptor pathway inhibitors

Wen-Hsing Lin; Jen-Shin Song; Teng-Yuan Chang; Chun-Yu Chang; Yu-Ning Fu; Chi-Ling Yeh; Szu-Huei Wu; Yu-Wen Huang; Ming-Yu Fang; Tzu-Wen Lien; Hsing-Pang Hsieh; Yu-Sheng Chao; Shiu-Feng Huang; Shih-Feng Tsai; Lin-Mei Wang; John T.-A. Hsu; Yi-Rong Chen

Epidermal growth factor receptor (EGFR) is a valid drug target for development of target-based therapeutics against non-small-cell lung cancer. In this study, we established a high-throughput cell-based assay to screen for compounds that may inhibit EGFR activation and/or EGFR-mediated downstream signaling pathway. This drug screening platform is based on the characterization of an EGFR-transfected 32D cell line (32D-EGFR). The expression of EGFR in 32D cells allowed cell proliferation in the presence of either epidermal growth factor (EGF) or interleukin 3 (IL-3) and provided a system for both screening and counterscreening of EGFR pathway-inhibitory compounds. After the completion of primary and secondary screenings in which 32D-EGFR cells were grown under the stimulation of either EGF or IL-3, 9 of 20,000 compounds were found to selectively inhibit the EGF-dependent proliferation, but not the IL-3-dependent proliferation, of 32D-EGFR cells. Subsequent analysis showed that 3 compounds of the 9 initial hits directly inhibited the kinase activity of recombinant EGFR in vitro and the phosphorylation of EGFR in H1299 cells transfected with EGFR. Thus, this 32D-EGFR assay system provides a promising approach for identifying novel EGFR and EGFR signaling pathway inhibitors with potential antitumor activity.


PLOS ONE | 2013

Parallel Screening of Wild-Type and Drug-Resistant Targets for Anti-Resistance Neuraminidase Inhibitors

Kai-Cheng Hsu; Hui-Chen Hung; Jim-Tong Horng; Ming-Yu Fang; Chun-Yu Chang; Ling-Ting Li; I-Jung Chen; Yun-Chu Chen; Ding-Li Chou; Chun-Wei Chang; Hsing-Pang Hsieh; Jinn-Moon Yang; John T.-A. Hsu

Infection with influenza virus is a major public health problem, causing serious illness and death each year. Emergence of drug-resistant influenza virus strains limits the effectiveness of drug treatment. Importantly, a dual H275Y/I223R mutation detected in the pandemic influenza A 2009 virus strain results in multidrug resistance to current neuraminidase (NA) drugs. Therefore, discovery of new agents for treating multiple drug-resistant (MDR) influenza virus infections is important. Here, we propose a parallel screening strategy that simultaneously screens wild-type (WT) and MDR NAs, and identifies inhibitors matching the subsite characteristics of both NA-binding sites. These may maintain their potency when drug-resistant mutations arise. Initially, we analyzed the subsite of the dual H275Y/I223R NA mutant. Analysis of the site-moiety maps of NA protein structures show that the mutant subsite has a relatively small volume and is highly polar compared with the WT subsite. Moreover, the mutant subsite has a high preference for forming hydrogen-bonding interactions with polar moieties. These changes may drive multidrug resistance. Using this strategy, we identified a new inhibitor, Remazol Brilliant Blue R (RB19, an anthraquinone dye), which inhibited WT NA and MDR NA with IC50 values of 3.4 and 4.5 µM, respectively. RB19 comprises a rigid core scaffold and a flexible chain with a large polar moiety. The former interacts with highly conserved residues, decreasing the probability of resistance. The latter forms van der Waals contacts with the WT subsite and yields hydrogen bonds with the mutant subsite by switching the orientation of its flexible side chain. Both scaffolds of RB19 are good starting points for lead optimization. The results reveal a parallel screening strategy for identifying resistance mechanisms and discovering anti-resistance neuraminidase inhibitors. We believe that this strategy may be applied to other diseases with high mutation rates, such as cancer and human immunodeficiency virus type 1.


PLOS ONE | 2014

The Combination Effects of LiCl and the Active Leflunomide Metabolite, A771726, on Viral-Induced Interleukin 6 Production and EV-A71 Replication

Hui-Chen Hung; Shin-Ru Shih; Teng-Yuan Chang; Ming-Yu Fang; John T.-A. Hsu

Enterovirus 71 (EV-A71) is a neurotropic virus that can cause severe complications involving the central nervous system. No effective antiviral therapeutics are available for treating EV-A71 infection and drug discovery efforts are rarely focused to target this disease. Thus, the main goal of this study was to discover existing drugs with novel indications that may effectively inhibit EV-A71 replication and the inflammatory cytokines elevation. In this study, we showed that LiCl, a GSK3β inhibitor, effectively suppressed EV-A71 replication, apoptosis and inflammatory cytokines production (Interleukin 6, Interleukin-1β) in infected cells. Furthermore, LiCl and an immunomodular agent were shown to strongly synergize with each other in suppressing EV-A71 replication. The results highlighted potential new treatment regimens in suppressing sequelae caused by EV-A71 replication.


ChemMedChem | 2012

Anti-influenza Drug Discovery: Identification of an Orally Bioavailable Quinoline Derivative through Activity- and Property-Guided Lead Optimization

Jiann-Yih Yeh; Mohane Selvaraj Coumar; Hui-Yi Shiao; Ta-Jen Lin; Yen-Chun Lee; Hui-Chen Hung; Shengkai Ko; Fu-Ming Kuo; Ming-Yu Fang; Yu-Lin Huang; John T.-A. Hsu; Teng-Kuang Yeh; Shin-Ru Shih; Yu-Sheng Chao; Jim-Tong Horng; Hsing-Pang Hsieh

From a high-throughput screening (HTS) hit with inhibitory activity against virus-induced cytophathic in the low micromolar range, we have developed a potent anti-influenza lead through careful optimization without compromising the drug-like properties of the compound. An orally bioavailable compound was identified as a lead agent with nanomolar activity against influenza, representing a 140-fold improvement over the initial hit.

Collaboration


Dive into the Ming-Yu Fang's collaboration.

Top Co-Authors

Avatar

John T.-A. Hsu

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Hsing-Pang Hsieh

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Hui-Chen Hung

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Yu-Sheng Chao

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Chun-Yu Chang

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Teng-Yuan Chang

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Wen-Hsing Lin

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Chang-Ying Chu

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Chun-Hwa Chen

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge