Mingcong Rong
Xiamen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mingcong Rong.
Analytical Chemistry | 2015
Mingcong Rong; Liping Lin; Xinhong Song; Tingting Zhao; Yunxin Zhong; Jiawei Yan; Yiru Wang; Xi Chen
An effective and facile fluorescence sensing approach for the determination of 2,4,6-trinitrophenol (TNP) using the chemically oxidized and liquid exfoliated graphitic carbon nitride (g-C3N4) nanosheets was developed. The strong inner filter effect and molecular interactions (electrostatic, π-π, and hydrogen bonding interactions) between TNP and the g-C3N4 nanosheets led to the fluorescence quenching of the g-C3N4 nanosheets with efficient selectivity and sensitivity. Under optimal conditions, the limit of detection for TNP was found to be 8.2 nM. The proposed approach has potential application for visual detection of TNP in natural water samples for public safety and security.
Analytica Chimica Acta | 2012
Genghuang Wu; Yanfang Wu; Xi-wei Liu; Mingcong Rong; Xiao-mei Chen; Xi Chen
In this study, an electrochemical ascorbic acid (AA) sensor was constructed based on a glassy carbon electrode modified with palladium nanoparticles supported on graphene oxide (PdNPs-GO). PdNPs with a mean diameter of 2.6 nm were homogeneously deposited on GO sheets by the redox reaction between PdCl(4)(2-) and GO. Cyclic voltammetry and amperometric methods were used to evaluate the electrocatalytic activity towards the oxidation of AA in neutral media. Compared to a bare GC or a Pd electrode, the anodic peak potential of AA (0.006 V) at PdNPs-GO modified electrode was shifted negatively, and the large anodic peak potential separation (0.172 V) of AA and dopamine (DA), which could contribute to the synergistic effect of GO and PdNPs, was investigated. A further amperometric experiment proved that the proposed sensor was capable of sensitive and selective sensing of AA even in the presence of DA and uric acid. The modified electrode exhibited a rapid response to AA within 5s and the amperometric signal showed a good linear correlation to AA concentration in a broad range from 20 μM to 2.28 mM with a correlation coefficient of R=0.9991. Moreover, the proposed sensor was applied to the determination of AA in vitamin C tablet samples. The satisfactory results obtained indicated that the proposed sensor was promising for the development of novel electrochemical sensing for AA determination.
Analytica Chimica Acta | 2015
Liping Lin; Xinhong Song; Yiying Chen; Mingcong Rong; Tingting Zhao; Yiru Wang; Yaqi Jiang; Xi Chen
In this paper, the highly intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots (N-GQDs) is revealed. This activity was greatly dependent on pH, temperature and H2O2 concentration. The experimental results showed that the stable N-GQDs could be used for the detection of H2O2 and glucose over a wide range of pH and temperature, offering a simple, highly selective and sensitive approach for their colorimetric sensing. The linearity between the analyte concentration and absorption ranged from 20 to 1170 μM for H2O2 and 25 to 375 μM for glucose with a detection limit of 5.3 μM for H2O2 and 16 μM for glucose. This assay was also successfully applied to the detection of glucose concentrations in diluted serum and fruit juice samples.
Analytical Chemistry | 2013
Tingyao Zhou; Liping Lin; Mingcong Rong; Yaqi Jiang; Xi Chen
In this paper, the development of a simple method is described for preparing highly red fluorescent mercaptosuccinic acid stabilized AgAu alloy nanoclusters (MSA-AgAu NCs) through the core etching of Ag nanoparticles (NPs) and a galvanic exchange reaction using nonorganic solvent and no multistep centrifuge washing. The as-prepared MSA-AgAu NCs were characterized using spectroscopic and microscopic techniques. After covalently attaching methoxy-poly(ethylene glycol)-NH2 (m-PEG-NH2), PEGylated MSA-AgAu NCs were still stable even in 1 M NaCl. Probably based on the deposition of Al(3+)-enhanced fluorescence, the PEGylated MSA-AgAu NCs offered highly selective and sensitive sensing of Al(3+) in aqueous solution with a detection limit of 0.8 μM.
Journal of Materials Chemistry C | 2015
Mingcong Rong; Xinhong Song; Tingting Zhao; Qiuhong Yao; Yiru Wang; Xi Chen
Highly fluorescent phosphorus, oxygen-doped graphitic carbon nitride nanodots (P,O-g-C3N4 nanodots) were synthesized using chemical oxidation and hydrothermal etching of bulk P-g-C3N4 obtained via pyrolysis of phytic acid and melamine. The P,O-g-C3N4 nanodots emitted strong blue fluorescence with a high quantum yield of 90.2%, and displayed high resistance to photobleaching and high ionic strength. A sensitive and facile fluorescence sensing approach for Cu2+ was developed through fluorescence quenching based on the static fluorescence quenching and photoinduced electron transfer. Under optimal conditions, a rapid detection of Cu2+ could be completed in 5 min with a detection limit of 2 nM, and a linearity ranging from 0 to 1 μM. Using acetylthiocholine (ATCh) as the substrate, the fluorescence of the P,O-g-C3N4 nanodots–Cu2+ system could be sensitively turned on in the presence of acetylcholinesterase (AChE) through the reaction between Cu2+ and thiocholine, the hydrolysis product of ATCh by AChE. A linearity ranging from 0.01 to 3 mU mL−1 could be obtained with a detection limit of 0.01 mU mL−1. In addition, the proposed approach showed potential application for the detection of Cu2+ in natural water samples and AChE activity in human plasma.
Nanoscale | 2015
Liping Lin; Xinhong Song; Yiying Chen; Mingcong Rong; Tingting Zhao; Yaqi Jiang; Yiru Wang; Xi Chen
Highly fluorescent nitrogen-doped graphene quantum dots (N-GQDs) with greenish-yellow emission and quantum yield of 13.2% have been synthesized via a one-pot hydrothermal method. The obtained N-GQDs displayed excellent optical properties, high photostability and resistance to strong ion strength. Based on the higher affinity of pyrophosphate (PPi) than carboxyl and amido groups on the surface of the N-GQDs to Eu(3+), a Eu(3+)-modulated N-GQD off-on fluorescent probe for PPi detection was constructed with a detection limit of 0.074 μM. The detection process was simple in design, easy to operate, and showed a highly selective response to PPi in the presence of co-existing anions. This work widens the applications of N-GQDs with versatile functionality and reactivity in clinical diagnostics and as biosensors.
Analyst | 2013
Yanfang Wu; Jinhua Huang; Tingyao Zhou; Mingcong Rong; Yaqi Jiang; Xi Chen
A gold nanocluster@bovine serum albumin-silica nanoparticle composite has been synthesized and used for the solid-state electrochemiluminescence (ECL) sensing of hydrogen peroxide. The ECL characteristics have also been studied.
Chemistry: A European Journal | 2016
Mingcong Rong; Zhixiong Cai; Lei Xie; Chunshui Lin; Xinhong Song; Feng Luo; Yiru Wang; Xi Chen
Graphitic carbon nitride nanodots (g-C3 N4 nanodots), as a new kind of heavy-metal-free quantum dots, have attracted considerable attention because of their unique physical and chemical properties. Although various methods to obtain g-C3 N4 nanodots have been reported, it is still a challenge to synthesize g-C3 N4 nanodots with ultrahigh fluorescence quantum yield (QY). In this study, highly fluorescent phosphorus/oxygen-doped graphitic carbon nitride (P,O-g-C3 N4 ) nanodots were prepared by chemical oxidation and hydrothermal etching of bulk P-g-C3 N4 derived from the pyrolysis of phytic acid and melamine. The as-prepared P,O-g-C3 N4 nanodots showed strong blue fluorescence and a relatively high QY of up to 90.2 %, which can be ascribed to intrinsic phosphorus/oxygen-containing groups, and surface-oxidation-related fluorescence enhancement. In addition, the P,O-g-C3 N4 nanodots were explored for cell imaging with excellent stability and biocompatibility, which suggest that they have great potential in biological applications.
Nanoscale | 2015
Liping Lin; Mingcong Rong; Sisi Lu; Xinhong Song; Yunxin Zhong; Jiawei Yan; Yiru Wang; Xi Chen
Nanoscale | 2012
Tingyao Zhou; Mingcong Rong; Zhi-min Cai; Chaoyong James Yang; Xi Chen