Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingdi Xu is active.

Publication


Featured researches published by Mingdi Xu.


Analytical Chemistry | 2013

Magnetic Bead-Based Reverse Colorimetric Immunoassay Strategy for Sensing Biomolecules

Zhuangqiang Gao; Mingdi Xu; Li Hou; Guonan Chen; Dianping Tang

A novel reverse colorimetric immunoassay (RCIA) strategy was for the first time designed and utilized for sensitive detection of low-abundance protein (prostate-specific antigen, PSA, used in this case) in biological fluids by coupling highly catalytic efficient catalase with magnetic bead-based peroxidase mimics. To construct such a RCIA system, two nanostructures including magnetic beads and gold nanoparticles were first synthesized and functionalized with anti-PSA capture antibody and catalase/anti-PSA detection antibody, respectively. Thereafter, a specific sandwich-type immunoassay format was employed for determination of PSA by using functional gold nanoparticles as enzymatic bioreactors and anti-PSA-conjugated magnetic beads as a colorimetric developer. The carried catalase, followed by the sandwiched immunocomplex, partially consumed the added hydrogen peroxide in the detection solution, which slowed down the catalytic efficiency of magnetic bead-based peroxidase mimics toward TMB/H2O2, thereby weakening the visible color and decreasing the colorimetric density. Different from conventional colorimetric immunoassay, the RCIA method determined the residual hydrogen peroxide in the substrate after consumption. Under the optimal conditions, the developed RCIA exhibited a wide dynamic range of 0.05-20 ng mL(-1) toward PSA with a detection limit of 0.03 ng mL(-1) at the 3Sblank level. Intra- and interassay coefficients of variation were below 6.1% and 9.3%, respectively. Additionally, the methodology was further validated for the analysis of 12 PSA clinical serum specimens, giving results in good accordance with those obtained by the commercially available enzyme-linked immunosorbent assay (ELISA) method.


Scientific Reports | 2015

Enhanced colorimetric immunoassay accompanying with enzyme cascade amplification strategy for ultrasensitive detection of low-abundance protein.

Zhuangqiang Gao; Li Hou; Mingdi Xu; Dianping Tang

Methods based on enzyme labels have been developed for colorimetric immunoassays, but most involve poor sensitivity and are unsuitable for routine use. Herein, we design an enhanced colorimetric immunoassay for prostate-specific antigen (PSA) coupling with an enzyme-cascade-amplification strategy (ECAS-CIA). In the presence of target PSA, the labeled alkaline phosphatase on secondary antibody catalyzes the formation of palladium nanostructures, which catalyze 3,3′,5,5′-tetramethylbenzidine-H2O2 system to produce the colored products, thus resulting in the signal cascade amplification. Results indicated that the ECAS-CIA presents good responses toward PSA, and allows detection of PSA at a concentration as low as 0.05 ng mL−1. Intra- and inter-assay coefficients of variation are below 9.5% and 10.7%, respectively. Additionally, the methodology is validated for analysis of clinical serum specimens with consistent results obtained by PSA ELISA kit. Importantly, the ECAS-CIA opens a new horizon for protein diagnostics and biosecurity.


Biosensors and Bioelectronics | 2013

Multiplexed electrochemical immunoassay of biomarkers using metal sulfide quantum dot nanolabels and trifunctionalized magnetic beads.

Dianping Tang; Li Hou; Reinhard Niessner; Mingdi Xu; Zhuangqiang Gao; Dietmar Knopp

A novel multiplexed stripping voltammetric immunoassay protocol was designed for the simultaneous detection of multiple biomarkers (CA 125, CA 15-3, and CA 19-9 used as models) using PAMAM dendrimer-metal sulfide quantum dot (QD) nanolabels as distinguishable signal tags and trifunctionalized magnetic beads as an immunosensing probe. The probe was prepared by means of co-immobilization of primary monoclonal anti-CA 125, anti-CA 15-3 and anti-CA 19-9 antibodies on a single magnetic bead. The PAMAM dendrimer-metal sulfide QD nanolabels containing CdS, ZnS and PbS were synthesized by using in situ synthesis method, which were utilized for the labeling of polyclonal rabbit anti-CA 125, anti-CA 15-3 and anti-CA 19-9 detection antibodies, respectively. A sandwich-type immunoassay format was adopted for the simultaneous determination of target biomarkers in a low-binding microtiter plate. The subsequent anodic stripping voltammetric analysis of cadmium, zinc, and lead components released by acid from the corresponding QD nanolabels was conducted at an in situ prepared mercury film electrode based on the difference of peak potentials. Experimental results indicated that the multiplexed immunoassay enabled the simultaneous detection of three cancer biomarkers in a single run with wide dynamic ranges of 0.01-50 U mL(-1) and detection limits (LODs) of 0.005 U mL(-1). Intra-assay and inter-assay coefficients of variation (CVs) were less than 7.2% and 10.4%, respectively. No significant differences at the 0.05 significance level were encountered in the analysis of 10 clinical serum specimens between the multiplexed immunoassay and a commercially available enzyme-linked immunosorbent assay (ELISA).


Analytical Chemistry | 2014

Tyramine-Based Enzymatic Conjugate Repeats for Ultrasensitive Immunoassay Accompanying Tyramine Signal Amplification with Enzymatic Biocatalytic Precipitation

Li Hou; Yun Tang; Mingdi Xu; Zhuangqiang Gao; Dianping Tang

A new impedimetric immunoassay protocol based on enzyme-triggered formation of tyramine-enzyme repeats on gold nanoparticle (AuNP) was designed for highly sensitive detection of carcinoembryonic antigen (CEA, as a model) by virtue of utilizing enzymatic biocatalytic precipitation toward 4-chloro-1-naphthol (4-CN) on anti-CEA antibody (Ab1)-modified immunosensor. Initially, AuNP was functionalized with horseradish peroxidase and detection antibody (HRP-AuNP-Ab2), and then HRP-tyramine conjugate was utilized for the formation of tyramine-HRP repeats through the triggering of the immobilized HRP on the AuNP with the aid of H2O2. In the presence of target CEA, the carried HRP-tyramine repeats accompanying the sandwiched immunocomplex catalyzed the 4-CN oxidation to produce an insoluble precipitation on the immunosensor, thus causing a local alteration of the conductivity. Three signal-transduction tags including HRP-Ab2, HRP-AuNP-Ab2, and HRP-AuNP-Ab2 with HRP-tyramine repeats were employed for target CEA evaluation, and improved analytical properties were achieved by HRP-AuNP-Ab2 with HRP-tyramine repeats. Using the unique signal-transduction tag, the analytical performance of the impedimetric immunoassay was studied in detail. Under the optimal conditions, the impedimetric immunosensor displayed a wide dynamic working range of between 0.5 pg mL(-1) and 40 ng mL(-1) with a detection limit (LOD) of 0.38 pg mL(-1) relative to target CEA. The coefficients of variation (CVs) were ≤9.3% and 13.3% for the intra-assay and interassay, respectively. The levels of CEA in eight clinical serum specimens were measured by using the developed impedimetric immunosensor. The obtained results correlated well with those from the electrochemiluminescent (ECL)-based immunoassay with a correlation coefficient of 0.998.


Biosensors and Bioelectronics | 2013

DNAzyme-based magneto-controlled electronic switch for picomolar detection of lead (II) coupling with DNA-based hybridization chain reaction

Junyang Zhuang; Libing Fu; Mingdi Xu; Qian Zhou; Guonan Chen; Dianping Tang

A novel magneto-controlled electrochemical DNA biosensor is designed for the ultrasensitive detection of lead coupling a lead-specific DNAzyme with DNA-based hybridization chain reaction (HCR). To construct such a magnetic lead sensor, DNAzyme-based molecular beacons, selective to cleavage in the presence of Pb(2+), are initially immobilized onto magnetic beads, which were used as the recognition elements. Upon addition of target lead, catalytic cleavage of substrate DNA segments in the double-stranded DNAzymes results in the capture of the initiator strands via the conjugated catalytic strands on magnetic beads. The captured DNA initiator strands trigger the hybridization chain reaction between two alternating hairpin DNA structures labeled with ferrocene to form a nicked double-helix on the magnetic beads. Numerous ferrocene molecules are formed on the neighboring probes, each of which produces an electrochemical signal within the applied potential. Under optimal conditions, the electrochemical signal of the magnetic lead sensor increases with the increasing lead level in the sample, and exhibits a linear response over a Pb(2+) concentration range of 0.1-75 nM with a detection limit of 37 pM. Quantitative measurement of Pb(2+) in the complex sample demonstrates the selectivity of the sensor scheme and points favorably to the application of such technologies to the analysis of environmental samples. The unique combination of a DNAzyme with hybridization chain reaction makes it possible to change the DNAzyme to select for other compounds of interest. This work represents the initial steps toward the creation of a robust field sensor for lead in groundwater or drinking water.


Chemical Communications | 2012

Nanogold-based bio-bar codes for label-free immunosensing of proteins coupling with an in situ DNA-based hybridization chain reaction

Jun Zhou; Mingdi Xu; Dianping Tang; Zhuangqiang Gao; Juan Tang; Guonan Chen

A label-free, non-enzyme immunosensing strategy is designed for ultrasensitive electronic detection of disease-related proteins (carcinoembryonic antigen as a model) by using gold nanoparticle-based bio-bar codes and an in situ amplified DNA-based hybridization chain reaction.


Analytical Chemistry | 2015

Target-induced nano-enzyme reactor mediated hole-trapping for high-throughput immunoassay based on a split-type photoelectrochemical detection strategy.

Junyang Zhuang; Dianping Tang; Wenqiang Lai; Mingdi Xu

Photoelectrochemical (PEC) detection is an emerging and promising analytical tool. However, its actual application still faces some challenges like potential damage of biomolecules (caused by itself system) and intrinsic low-throughput detection. To solve the problems, herein we design a novel split-type photoelectrochemical immunoassay (STPIA) for ultrasensitive detection of prostate specific antigen (PSA). Initially, the immunoreaction was performed on a microplate using a secondary antibody/primer-circular DNA-labeled gold nanoparticle as the detection tag. Then, numerously repeated oligonucleotide sequences with many biotin moieties were in situ synthesized on the nanogold tag via RCA reaction. The formed biotin concatamers acted as a powerful scaffold to bind with avidin-alkaline phosphatase (ALP) conjugates and construct a nanoenzyme reactor. By this means, enzymatic hydrolysate (ascorbic acid) was generated to capture the photogenerated holes in the CdS quantum dot-sensitized TiO2 nanotube arrays, resulting in amplification of the photocurrent signal. To elaborate, the microplate-based immunoassay and the high-throughput detection system, a semiautomatic detection cell (installed with a three-electrode system), was employed. Under optimal conditions, the photocurrent increased with the increasing PSA concentration in a dynamic working range from 0.001 to 3 ng mL(-1), with a low detection limit (LOD) of 0.32 pg mL(-1). Meanwhile, the developed split-type photoelectrochemical immunoassay exhibited high specificity and acceptable accuracy for analysis of human serum specimens in comparison with referenced electrochemiluminescence immunoassay method. Importantly, the system was not only suitable for the sandwich-type immunoassay mode, but also utilized for the detection of small molecules (e.g., aflatoxin B1) with a competitive-type assay format.


Biosensors and Bioelectronics | 2013

Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation

Li Hou; Yuling Cui; Mingdi Xu; Zhuangqiang Gao; Jianxin Huang; Dianping Tang

A new sandwich-type impedimetric immunosensor based on functionalized graphene oxide nanosheets with a high ratio of horseradish peroxidase (HRP) and detection antibody was developed for the detection of carcinoembryonic antigen (CEA) by coupling with enzymatic biocatalytic precipitation of 4-chloro-1-naphthol (4-CN) on the captured antibody-modified glassy carbon electrode. Two molecular tags (with and without the graphene oxide nanosheets) were investigated for the detection of CEA and improved analytical features were acquired with the graphene-based labeling. With the labeling method, the performance and factors influencing the properties of the impedimetric immunosensors were also studied and evaluated. Under the optimal conditions, the dynamic concentration range of the impedimetric immunosensors spanned from 1.0pgmL(-1) to 80ngmL(-1) CEA with a detection limit (LOD) of 0.64pgmL(-1). Intra- and inter-assay coefficients of variation were less than 7.5% and 11%, respectively. Additionally, the methodology was evaluated for CEA analysis of 10 clinical serum samples and 5 diluted serum samples, receiving in a good accordance with the results obtained by the impedimetric immunoassay and the commercialized electrochemiluminescent method.


Biosensors and Bioelectronics | 2014

DNAzyme-functionalized gold–palladium hybrid nanostructures for triple signal amplification of impedimetric immunosensor

Li Hou; Zhuangqiang Gao; Mingdi Xu; Xia Cao; Xiaoping Wu; Guonan Chen; Dianping Tang

A highly sensitive and selective impedimetric immunosensor with triple signal amplification was designed for ultrasensitive detection of prostate-specific antigen (PSA) by using anti-PSA antibody and DNAzyme-functionalized gold-palladium hybrid nanotags (Ab2-AuPd-DNA). The signal was amplified based on the Ab2-AuPd-DNA toward the catalytic precipitation of 4-choloro-1-naphthol (4-CN). DNAzyme (as a kind of peroxidase mimic) could catalyze the oxidation of 4-CN, whilst AuPd hybrid nanostructures could not only provide a large surface coverage for immobilization of biomolecules but also promote 4-CN oxidation to some extent. The produced insoluble benzo-4-chlorohexadienone via 4-CN was coated on the electrode surface, and hindered the electron transfer between the solution and the electrode, thereby increasing the Faradaic impedance of the base electrode. Three labeling strategies including Ab2-AuNP, Ab2-AuPd and Ab2-AuPd-DNA were investigated for determination of PSA, and improved analytical features were obtained with the Ab2-AuPd-DNA strategy. Under optimal conditions, the dynamic concentration range of the impedimetric immunosensor spanned from 1.0 pg mL(-1) to 50 ng mL(-1) PSA with a detection limit of 0.73 pg mL(-1). Intra- and inter-assay coefficients of variation were below 8.5% and 9.5%, respectively. Importantly, no significant differences at the 0.05 significance level were encountered in the analysis of 6 clinical serum specimens and 6 diluted standards between the impedimetric immunosensor and the commercialized electrochemiluminescent method for PSA detection.


Analytical Chemistry | 2016

Facile Synthesis of Enhanced Fluorescent Gold–Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity

Qian Zhou; Youxiu Lin; Mingdi Xu; Zhuangqiang Gao; Huang-Hao Yang; Dianping Tang

Herein, gold-silver bimetallic nanoclusters (Au-Ag NCs) with the high fluorescent intensity were first synthesized successfully and utilized for the fabrication of sensitive and specific sensing probes toward inorganic pyrophosphatase (PPase) activity with the help of copper ion (Cu(2+)) and inorganic pyrophosphate ion (PPi). Cu(2+) was used as the quencher of fluorescent Au-Ag NC, while PPi was employed as the hydrolytic substrate of PPase. The system consisted of PPi, Cu(2+) ion, and bovine serum albumin (BSA)-stabilized Au-Ag NC. The detection was carried out by enzyme-induced hydrolysis of PPi to liberate copper ion from the Cu(2+)-PPi complex. In the absence of target PPase, free copper ions were initially chelated with inorganic pyrophosphate ions to form the Cu(2+)-PPi complexes via the coordination chemistry, thus preserving the natural fluorescent intensity of the Au-Ag NCs. Upon addition of target PPase into the detection system, the analyte hydrolyzed PPi into phosphate ions and released Cu(2+) ion from the Cu(2+)-PPi complex. The dissociated copper ions readily quenched the fluorescent signal of Au-Ag NCs, thereby resulting in the decrease of fluorescent intensity. Under optimal conditions, the detectable fluorescent intensity of the as-prepared Au-Ag NCs was linearly dependent on the activity of PPase within a dynamic linear range of 0.1-30 mU/mL and allowed the detection at a concentration as low as 0.03 mU/mL at the 3sblank criterion. Good reproducibility (CV < 8.5% for the intra-assay and interassay), high specificity, and long-term stability (90.1% of the initial signal after a storage period of 48 days) were also received by using our system toward target PPase activity. In addition, good results with the inhibition efficiency of sodium fluoride were obtained in the inhibitor screening research of pyrophosphatase. Importantly, this system based on highly enhanced fluorescent Au-Ag NCs offer promise for simple and cost-effective screening of target PPase activity without the needs of sample separation and multiple washing steps.

Collaboration


Dive into the Mingdi Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge