Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingfu Wang is active.

Publication


Featured researches published by Mingfu Wang.


Journal of Agricultural and Food Chemistry | 2008

Cinnamon Bark Proanthocyanidins as Reactive Carbonyl Scavengers To Prevent the Formation of Advanced Glycation Endproducts

Xiaofang Peng; Ka-Wing Cheng; Jinyu Ma; Bo Chen; Chi-Tang Ho; Clive Lo; Feng Chen; Mingfu Wang

Cinnamon bark has been reported to be effective in the alleviation of diabetes through its antioxidant and insulin-potentiating activities. In this study, the inhibitory effect of cinnamon bark on the formation of advanced glycation endproducts (AGEs) was investigated in a bovine serum albumin (BSA)-glucose model. Several phenolic compounds, such as catechin, epicatechin, and procyanidin B2, and phenol polymers were identified from the subfractions of aqueous cinnamon extract. These compounds showed significant inhibitory effects on the formation of AGEs. Their antiglycation activities were not only brought about by their antioxidant activities but also related to their trapping abilities of reactive carbonyl species such as methylglyoxal (MGO), an intermediate reactive carbonyl of AGE formation. Preliminary study on the reaction between MGO and procyanidin B2 revealed that MGO-procyanidin B2 adducts are primary products which are supposed to be stereoisomers. This is the first report that proanthocyanidins can effectively scavenge reactive carbonyl species and thus inhibit the formation of AGEs. As proanthocyanidins behave in a similar fashion as aminoguanidine (AG), the first AGE inhibitor explored in clinical trials, they show great potential to be developed as agents to alleviate diabetic complications.


Free Radical Biology and Medicine | 2008

Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity

Jianfei Chao; Man-Shan Yu; Ys Ho; Mingfu Wang; Raymond Chuen-Chung Chang

Oxyresveratrol (OXY) is a polyhydroxylated stilbene existing in mulberry. Increasing lines of evidence have shown its neuroprotective effects against Alzheimer disease and stroke. However, little is known about its neuroprotective effect in Parkinson disease (PD). Owing to its antioxidant activity, blood-brain barrier permeativity, and water solubility, we hypothesized that OXY may exert neuroprotective effects against parkinsonian mimetic 6-hydroxydopamine (6-OHDA) neurotoxicity. Neuroblastoma SH-SY5Y cells have long been used as dopaminergic neurons in PD research. We found that both pretreatment and posttreatment with OXY on SH-SY5Y cells significantly reduced the release of lactate dehydrogenase, the activity of caspase-3, and the generation of intracellular reactive oxygen species triggered by 6-OHDA. Compared to resveratrol, OXY exhibited a wider effective dosage range. We proved that OXY could penetrate the cell membrane by HPLC analysis of cell extracts. These results suggest that OXY may act as an intracellular antioxidant to reduce oxidative stress induced by 6-OHDA. Western blot analysis demonstrated that OXY markedly attenuated 6-OHDA-induced phosphorylation of JNK and c-Jun. Furthermore, we proved that OXY increased the basal levels of SIRT1, which may disclose new pathways accounting for the neuroprotective effects of OXY. Taken together, our results suggest OXY, a dietary phenolic compound, as a potential nutritional candidate for protection against neurodegeneration in PD.


Food & Function | 2011

Naturally occurring inhibitors against the formation of advanced glycation end-products

Xiaofang Peng; Jinyu Ma; Feng Chen; Mingfu Wang

Advanced glycation end-products (AGEs) are the final products of the non-enzymatic reaction between reducing sugars and amino groups in proteins, lipids and nucleic acids. Recently, the accumulation of AGEs in vivo has been implicated as a major pathogenic process in diabetic complications, atherosclerosis, Alzheimers disease and normal aging. The early recognition of AGEs can ascend to the late 1960s when a non-enzymatic glycation process was found in human body which is similar to the Maillard reaction. To some extent, AGEs can be regarded as products of the Maillard reaction. This review firstly introduces the Maillard reaction, the formation process of AGEs and harmful effects of AGEs to human health. As AGEs can cause undesirable diseases or disorders, it is necessary to investigate AGE inhibitors to offer a potential therapeutic approach for the prevention of diabetic or other pathogenic complications induced by AGEs. Typical effective AGE inhibitors with different inhibition mechanisms are also reviewed in this paper. Both synthetic compounds and natural products have been evaluated as inhibitors against the formation of AGEs. However, considering toxic or side effects of synthetic molecules present in clinical trials, natural products are more promising to be developed as potent AGE inhibitors.


Molecular Cancer Therapeutics | 2010

Alisol B, a Novel Inhibitor of the Sarcoplasmic/Endoplasmic Reticulum Ca2+ ATPase Pump, Induces Autophagy, Endoplasmic Reticulum Stress, and Apoptosis

Betty Yuen Kwan Law; Mingfu Wang; Dik-Lung Ma; Fawaz Al-Mousa; Francesco Michelangeli; Suk Hang Cheng; Margaret H.L. Ng; Ka Fai To; Anthony Y.F. Mok; Rebecca Y.Y. Ko; Sze Kui Lam; Feng Chen; Chi-Ming Che; Pauline Chiu; Ben C.B. Ko

Emerging evidence suggests that autophagic modulators have therapeutic potential. This study aims to identify novel autophagic inducers from traditional Chinese medicinal herbs as potential antitumor agents. Using an image-based screen and bioactivity-guided purification, we identified alisol B 23-acetate, alisol A 24-acetate, and alisol B from the rhizome of Alisma orientale as novel inducers of autophagy, with alisol B being the most potent natural product. Across several cancer cell lines, we showed that alisol B–treated cells displayed an increase of autophagic flux and formation of autophagosomes, leading to cell cycle arrest at the G1 phase and cell death. Alisol B induced calcium mobilization from internal stores, leading to autophagy through the activation of the CaMKK-AMPK-mammalian target of rapamycin pathway. Moreover, the disruption of calcium homeostasis induces endoplasmic reticulum stress and unfolded protein responses in alisol B–treated cells, leading to apoptotic cell death. Finally, by computational virtual docking analysis and biochemical assays, we showed that the molecular target of alisol B is the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase. This study provides detailed insights into the cytotoxic mechanism of a novel antitumor compound. Mol Cancer Ther; 9(3); 718–30


Journal of Agricultural and Food Chemistry | 2008

d-chiro-Inositol-Enriched Tartary Buckwheat Bran Extract Lowers the Blood Glucose Level in KK-Ay Mice

Yang Yao; Fang Shan; Junsheng Bian; Feng Chen; Mingfu Wang; Guixing Ren

D-chiro-inositol (DCI) is an active compound in tartary buckwheat [Fagopyrum tataricum (L.) Gaench] with an insulin-like bioactivity. The present study was performed to (i) prepare DCI-enriched tartary buckwheat bran extract (TBBE), (ii) evaluate its acute toxicity in mice, and (iii) examine its blood glucose lowering activity in diabetic mice. It was found that steaming buckwheat bran in an autoclave at 1.6 MPa and 120 degrees C for 60 min could significantly enrich the DCI level in TBBE from 0.03 to 0.22% and further to 22% after passage of the TBBE through activated carbon and ion exchange resins. An acute toxicity test demonstrated that the LD 50 of TBBE was >20 g/kg of body weight in mice, suggesting that TBBE was in general nontoxic and safe in mice. Male KK-A(y) mice (type 2 diabetic) and C57BL/6 mice (the control) were used to investigate the antidiabetic activity of TBBE. In KK-A(y) mice, the blood glucose, plasma C-peptide, glucagon, total cholesterol, triglyceride, and blood urea nitrogen (BUN) levels were significantly higher than those in the C57BL/6 mice. In addition, KK-A(y) mice showed an obvious decrease in insulin immunoreactivity in the pancreas. The present study clearly demonstrated that oral administration of DCI-enriched TBBE could lower plasma glucose, C-peptide, glucagon, triglyceride, and BUN, improve glucose tolerance, and enhance insulin immunoreactivity in KK-A(y) mice.


Journal of Agricultural and Food Chemistry | 2008

Antidiabetic activity of Mung bean extracts in diabetic KK-Ay mice

Yang Yao; Feng Chen; Mingfu Wang; Jiashi Wang; Guixing Ren

The antidiabetic effects of Mung bean sprout (MBS) extracts and Mung bean seed coat (MBSC) extracts were investigated in type 2 diabetic mice. Male KK-A (y) mice and C57BL/6 mice were used in this study. In KK-A (y) mice, the blood glucose, plasma C-peptide, glucagon, total cholesterol, triglyceride, and blood urea nitrogen (BUN) levels were significantly higher than those in the C57BL/6 mice ( P < 0.001, P < 0.001, P < 0.01, P < 0.001, P < 0.01, and P < 0.01). In addition, KK-A (y) mice showed an obvious decrease in insulin immunoreactivity in pancreas as well. MBS and MBSC were orally administrated to KK-A (y) mice for 5 weeks. It was found that MBS (2 g/kg) and MBSC (3 g/kg) lowered blood glucose, plasma C-peptide, glucagon, total cholesterol, triglyceride, and BUN levels and at the same time markedly improved glucose tolerance and increased insulin immunoreactive levels. These results suggest that MBS and MBSC exert an antidiabetic effect in type 2 diabetic mice.


Molecular Nutrition & Food Research | 2008

Isolation of tyrosinase inhibitors from Artocarpus heterophyllus and use of its extract as antibrowning agent

Zong-Ping Zheng; Ka-Wing Cheng; James Tsz-Kin To; Haitao Li; Mingfu Wang

A new furanoflavone, 7-(2,4-dihydroxyphenyl)-4-hydroxy-2-(2-hydroxy propan-2-yl)-2, 3-dihydrofuro(3, 2-g)chromen-5-one (artocarpfuranol, 1), together with 14 known compounds, dihydromorin (2), steppogenin (3), norartocarpetin (4), artocarpanone (5), artocarpesin (6), artocarpin (7), cycloartocarpin (8), cycloartocarpesin (9), artocarpetin (10), brosimone I (11), cudraflavone B (12), carpachromene (13), isoartocarpesin (14), and cyanomaclurin (15) were isolated from the wood of Artocarpus heterophyllus. Their structures were identified by interpretation of MS,( 1)H-NMR,( 13)C-NMR, HMQC, and HMBC spectroscopic data. Among them, compounds 1-6 and 14 showed strong mushroom tyrosinase inhibitory activity with IC(50) values lower than 50 microM, more potent than kojic acid (IC(50) = 71.6 microM), a well-known tyrosinase inhibitor. In addition, extract of A. heterophyllus was evaluated for its antibrowning effect on fresh-cut apple slices. It was discovered that fresh-cut apple slices treated by dipping in solution of 0.03 or 0.05% of A. heterophyllus extract with 0.5% ascorbic acid did not undergo any substantial browning reaction after storage at room temperature for 24 h. The antibrowning effect was significantly better than samples treated with the extract (0.03 or 0.05%) or ascorbic acid (0.5%) alone. The results provide preliminary evidence supporting the potential of this natural extract as antibrowning agent in food systems.


Oncogene | 2003

Inhibition of cell transformation by resveratrol and its derivatives: differential effects and mechanisms involved

Qing-Bai She; Wei Ya Ma; Mingfu Wang; Akira Kaji; Chi-Tang Ho; Zigang Dong

Resveratrol, a constituent of grapes and other foods, has been reported to be a potential cancer chemopreventive agent. Our previous study showed that the antitumor activity of resveratrol occurs through mitogen-activated protein kinases-mediated p53 activation and induction of apoptosis. To develop more effective agents with fewer side effects for the chemoprevention of cancer, we investigated the effect of resveratrol and its structurally related derivatives on epidermal growth factor (EGF)-induced cell transformation. Our results provided the first evidence that one of the resveratrol derivatives exerted a more potent inhibitory effect than resveratrol on EGF-induced cell transformation, but had less cytotoxic effects on normal nontransformed cells. Compared to resveratrol, this compound also caused cell cycle arrest in the G1 phase, but did not induce p53 activation and apoptosis. Furthermore, this compound, but not resveratrol, markedly inhibited EGF-induced phosphatidylinositol-3 kinase (PI-3K) and Akt activation. Collectively, these data suggested that the higher antitumor effect of the compound compared to resveratrol, may act through a different mechanism by mainly targeting PI-3K/Akt signaling pathways.


Journal of Experimental Botany | 2010

Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum

Yegang Du; Hung Chu; Mingfu Wang; Ivan K. Chu; Clive Lo

Following inoculation with the anthracnose pathogen Colletotrichum sublineolum, seedlings of the sorghum resistant cultivar SC748-5 showed more rapid and elevated accumulation of luteolin than the susceptible cultivar BTx623. On the other hand, apigenin was the major flavone detected in infected BTx623 seedlings. Luteolin was demonstrated to show stronger inhibition of spore germination of C. sublineolum than apigenin. Because of their pathogen-inducible and antifungal nature, both flavone aglycones are considered sorghum phytoalexins. The key enzyme responsible for flavone biosynthesis has not been characterized in monocots. A sorghum pathogen-inducible gene encoding a cytochrome P450 protein (CYP93G3) in the uncharacterized CYP93G subfamily was identified. Transgenic expression of the P450 gene in Arabidopsis demonstrated that the encoded protein is a functional flavone synthase (FNS) II in planta. The sorghum gene was then termed SbFNSII. It is a single-copy gene located on chromosome 2 and the first FNSII gene characterized in a monocot. Metabolite analysis by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in precursor ion scan mode revealed the accumulation of 2-hydroxynaringenin and 2-hydroxyeriodictyol hexosides in the transgenic Arabidopsis plants. Hence, SbFNSII appears to share a similar catalytic mechanism with the licorice and Medicago truncatula FNSIIs (CYP93B subfamily) by converting flavanones to flavone through the formation of 2-hydroxyflavanones.


Molecular Carcinogenesis | 2008

Antitumor Activity of 3,5,4 '-trimethoxystilbene in COLO 205 cells and xenografts in SCID mice

Min-Hsiung Pan; Jia-Hui Gao; Ching-Shu Lai; Ying Jan Wang; Wen-Ming Chen; Chih-Yu Lo; Mingfu Wang; Slavik Dushenkov; Chi-Tang Ho

Resveratrol (R‐3), a trihydroxy trans‐stilbene from grape, inhibits multistage carcinogenesis in animal models. Here we report that 3,5,4′‐trimethoxystilbene (MR‐3), the permethylated derivative of R‐3 was more potent against the growth of human cancer cells (HT‐29, PC‐3, COLO 205) with estimated IC50 values of 81.31,42.71, and 6.25 µM, respectively. We further observed that MR‐3 induced apoptosis in COLO 205 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS). ROS generation occurs in the early stages of MR‐3‐induced apoptosis, preceding cytochrome‐c release, caspase activation, and DNA fragmentation. Significant therapeutic effects were demonstrated in vivo by treating severe combined immune deficiency (SCID) mice bearing COLO 205 tumor xenografts with MR‐3 (50 mg/kg ip). Assays on DNA fragmentation and caspase activation were performed and demonstrated that apoptosis occurred in tumor tissues treated with MR‐3. The appearance of apoptotic cells, as shown by Hematoxylin and Eosin (H&E) staining, and an increase in p21 and decrease in proliferating cell nuclear antigen (PCNA) protein by immuno‐histochemistry were observed in tumor tissues under MR‐3 treatment. Our study identifies the novel mechanisms of the antitumor effects of MR‐3 and indicates that these results may have significant applications for cancer chemotherapy.

Collaboration


Dive into the Mingfu Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clive Lo

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Jinyu Ma

University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge