Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaofang Peng is active.

Publication


Featured researches published by Xiaofang Peng.


Journal of Agricultural and Food Chemistry | 2008

Cinnamon Bark Proanthocyanidins as Reactive Carbonyl Scavengers To Prevent the Formation of Advanced Glycation Endproducts

Xiaofang Peng; Ka-Wing Cheng; Jinyu Ma; Bo Chen; Chi-Tang Ho; Clive Lo; Feng Chen; Mingfu Wang

Cinnamon bark has been reported to be effective in the alleviation of diabetes through its antioxidant and insulin-potentiating activities. In this study, the inhibitory effect of cinnamon bark on the formation of advanced glycation endproducts (AGEs) was investigated in a bovine serum albumin (BSA)-glucose model. Several phenolic compounds, such as catechin, epicatechin, and procyanidin B2, and phenol polymers were identified from the subfractions of aqueous cinnamon extract. These compounds showed significant inhibitory effects on the formation of AGEs. Their antiglycation activities were not only brought about by their antioxidant activities but also related to their trapping abilities of reactive carbonyl species such as methylglyoxal (MGO), an intermediate reactive carbonyl of AGE formation. Preliminary study on the reaction between MGO and procyanidin B2 revealed that MGO-procyanidin B2 adducts are primary products which are supposed to be stereoisomers. This is the first report that proanthocyanidins can effectively scavenge reactive carbonyl species and thus inhibit the formation of AGEs. As proanthocyanidins behave in a similar fashion as aminoguanidine (AG), the first AGE inhibitor explored in clinical trials, they show great potential to be developed as agents to alleviate diabetic complications.


Food & Function | 2011

Naturally occurring inhibitors against the formation of advanced glycation end-products

Xiaofang Peng; Jinyu Ma; Feng Chen; Mingfu Wang

Advanced glycation end-products (AGEs) are the final products of the non-enzymatic reaction between reducing sugars and amino groups in proteins, lipids and nucleic acids. Recently, the accumulation of AGEs in vivo has been implicated as a major pathogenic process in diabetic complications, atherosclerosis, Alzheimers disease and normal aging. The early recognition of AGEs can ascend to the late 1960s when a non-enzymatic glycation process was found in human body which is similar to the Maillard reaction. To some extent, AGEs can be regarded as products of the Maillard reaction. This review firstly introduces the Maillard reaction, the formation process of AGEs and harmful effects of AGEs to human health. As AGEs can cause undesirable diseases or disorders, it is necessary to investigate AGE inhibitors to offer a potential therapeutic approach for the prevention of diabetic or other pathogenic complications induced by AGEs. Typical effective AGE inhibitors with different inhibition mechanisms are also reviewed in this paper. Both synthetic compounds and natural products have been evaluated as inhibitors against the formation of AGEs. However, considering toxic or side effects of synthetic molecules present in clinical trials, natural products are more promising to be developed as potent AGE inhibitors.


Journal of Agricultural and Food Chemistry | 2010

Beneficial Effects of Cinnamon Proanthocyanidins on the Formation of Specific Advanced Glycation Endproducts and Methylglyoxal-Induced Impairment on Glucose Consumption

Xiaofang Peng; Jinyu Ma; Jianfei Chao; Zheng Sun; Raymond Chuen-Chung Chang; Iris Tse; Edmund T.S. Li; Feng Chen; Mingfu Wang

Advanced glycation endproducts (AGEs) are a group of complex and heterogeneous compounds formed from nonenzymatic reactions. The accumulation of AGEs in vivo has been implicated as a major pathogenic process in diabetic complications and other health disorders, such as atherosclerosis and Alzheimers disease, and normal aging. In this study, we investigate the inhibitory effects of cinnamon bark proanthocyanidins, catechin, epicatechin, and procyanidin B2 on the formation of specific AGE representatives including pentosidine, N(epsilon)-(carboxymethyl)lysine (CML), and methylglyoxal (MGO) derived AGEs. These compounds displayed obvious inhibitory effects on these specific AGEs, which are largely attributed to both their antioxidant activities and carbonyl scavenging capacities. Meanwhile, in terms of their potent MGO scavenging capacities, effects of these proanthocyanidins on insulin signaling pathways interfered by MGO were evaluated in 3T3-L1 adipocytes. According to the results, proanthocyanidins exerted protective effects on glucose consumption impaired by MGO in 3T3-L1 fat cells.


Journal of Agricultural and Food Chemistry | 2009

Trapping effects of green and black tea extracts on peroxidation-derived carbonyl substances of seal blubber oil.

Qin Zhu; Chia-Pei Liang; Ka-Wing Cheng; Xiaofang Peng; Chih-Yu Lo; Fereidoon Shahidi; Feng Chen; Chi-Tang Ho; Mingfu Wang

Green and black tea extracts were employed to stabilize seal blubber oil at 60 degrees C for 140 h. On the basis of the headspace SPME-GC-MS analysis, with the addition of green/black tea extracts, the contents of acetaldehyde, acrolein, malondialdehyde, and propanal, four major lipid peroxidation products, were reduced. The inhibition rates of acrolein formation by green tea and black tea extracts were 98.40 and 96.41% respectively, and were 99.17 and 98.16% for malondialdehyde, respectively, much higher than the inhibition of the formation of acetaldehyde and propanal. Because malondialdehyde and acrolein are reactive carbonyl species (RCS) and recent studies have suggested that phenolics can directly trap RCS, this study also investigated whether green tea polyphenols can trap acrolein or not. Acrolein was reduced by 90.30% in 3 h of incubation with (-)-epigallocatechin-3-gallate (EGCG). Subsequent LC-MS analysis revealed the formation of new adducts of equal molars of acrolein and EGCG. The reaction site for acrolein was elucidated to be the A ring of EGCG as evidenced by LC-MS/MS analysis and by testing of the acrolein-trapping capacities of the analogous individual A, B, and C rings of EGCG. Thus, EGCGs direct trapping of RCS may also contribute to the significant reduction of acrolein and other aldehydes in the peroxidation of seal blubber oil.


Journal of Separation Science | 2008

Use of capillary electrophoresis to evaluate protective effects of methylglyoxal scavengers on the activity of creatine kinase

Jinyu Ma; Xiaofang Peng; Ka-Wing Cheng; Feng Chen; Dajin Yang; Bo Chen; Mingfu Wang

Methylglyoxal (MGO) is a highly reactive alpha-oxoaldehyde formed endogenously in numerous enzymatic and nonenzymatic reactions. The reactions between MGO and various amino residues in proteins not only result in inactivation of enzymes, but also lead to the formation of different detrimental advanced glycation endproducts (AGEs). Recently, it was reported that creatine kinase (CK, EC 2.7.3.2) activity could be reduced or even lost under incubation with MGO in vitro. In this study, an efficient CE analytical method was developed for the evaluation of CK activity. Based on this CE method, the inhibitory effect of MGO on CK activity was confirmed. Several MGO scavengers such as aminoguanidine (AG) and some thiols showed obvious protective effects on CK activity against MGO. Furthermore, tiopronin (TP), a hepatoprotective drug, was found for the first time to counteract MGO-induced inhibition of CK activity in CK reaction. Meanwhile, TP also retained adenosine diphosphate (ADP) generation level in plasma treated with MGO, which implies that this drug may have potential protective effect on other enzymes which are associated with adenine nucleotide metabolism. Besides, the established CE approach can be utilized as a model for screening effective MGO scavengers by monitoring CK-catalyzed conversion between adenosine triphosphate and ADP.


Chemical Research in Toxicology | 2011

Dual effects of phloretin and phloridzin on the glycation induced by methylglyoxal in model systems.

Jinyu Ma; Xiaofang Peng; Xinchen Zhang; Feng Chen; Mingfu Wang

In the present study, the dual effects of phloretin and phloridzin on methylglyoxal (MGO)-induced glycation were investigated in three N(α)-acetyl amino acid (arginine, cysteine, and lysine) models and three N-terminal polypeptide (PP01, PP02, and PP03 containing arginine, cysteine, and lysine, respectively) models. In both N(α)-acetyl amino acids and N-terminal polypeptides models, the arginine residue was confirmed as the major target for modification induced by MGO. Meanwhile, MGO modification was significantly inhibited by the addition of phloretin or phloridzin via their MGO-trapping abilities, with phloretin being more effective. Interestingly, the cysteine residue was intact when solely incubated with MGO, whereas the consumption of N(α)-acetylcysteine and PP02 was promoted by the addition of phloretin. Additional adducts, [N(α)-acetylcysteine + 2MGO + phloretin-H(2)O] and [2N(α)-acetylcysteine + 2MGO + phloretin-2H(2)O] were formed in the model composed of N(α)-acetylcysteine, MGO, and phloretin. Another adduct, [PP02 + 2MGO + phloretin-H(2)O] was observed in the model composed of PP02, MGO, and phloretin. The generation of adducts indicates that phloretin could directly participate in the modification of the cysteine residue in the presence of MGO. When creatine kinase (model protein) was exposed to MGO, the addition of phloridzin did not show a significant effect on retaining the activity of creatine kinase impaired by MGO, whereas the addition of phloretin completely inactivated creatine kinase. Results of the mass spectrometric analysis of intact creatine kinase in different models demonstrated that phloretin could directly participate in the reaction between creatine kinase and MGO, which would lead to the inactivation of creatine kinase. Furthermore, the addition of N(α)-acetylcysteine was found to maintain the activity of creatine kinase incubated with phloretin and MGO. These results showed that phloretin and phloridzin could inhibit the modification of the arginine residue by MGO and that phloretin could directly participate in the reaction between the thiol group and MGO.


Biomedical Chromatography | 2009

High-performance liquid chromatographic determination of creatine kinase activity influenced by methylglyoxal

Xiaofang Peng; Jinyu Ma; Ka-Wing Cheng; Bo Chen; Feng Chen; Mingfu Wang

Protein glycation has been implicated in the development of diabetic complications and other health disorders, which mainly arise from accumulation of advanced glycation endproducts (AGEs) in vivo. Methylglyoxal (MGO), a typical reactive intermediate carbonyl formed in early glycation process, can react non-enzymatically with N-terminal amino groups on proteins, leading to their inactivation and generation of detrimental AGEs. Recently, it was reported that activity of creatine kinase (CK, EC 2.7.3.2) could be reduced or even eliminated completely after incubation with MGO in vitro. CK activity is usually determined by conventional colorimetric assays. However, these methods are not appropriate for monitoring the influence of MGO on CK activity since MGO can also directly react with creatine, a substrate of CK. In this study, an efficient and much more accurate HPLC approach was established to investigate the effect of MGO on CK activity. Aminoguanidine was utilized to eliminate interference from the undesirable reaction between residual MGO and creatine. It was found that higher concentrations of MGO and longer incubation time for CK and MGO caused more pronounced reduction in CK activity. This HPLC method greatly facilitates acquisition of kinetic data about CK reaction and through further improvement it may be adopted to rapidly screen potential inhibitors of MGO-induced glycation.


Food Chemistry | 2008

Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts

Xiaofang Peng; Zong-Ping Zheng; Ka-Wing Cheng; Fang Shan; Guixing Ren; Feng Chen; Mingfu Wang


Food Chemistry | 2010

The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread

Xiaofang Peng; Jinyu Ma; Ka-Wing Cheng; Yue Jiang; Feng Chen; Mingfu Wang


Journal of Agricultural and Food Chemistry | 2007

Inhibitory effect of fruit extracts on the formation of heterocyclic amines

Ka-Wing Cheng; Qingli Wu; Zong Ping Zheng; Xiaofang Peng; James E. Simon; Feng Chen; Mingfu Wang

Collaboration


Dive into the Xiaofang Peng's collaboration.

Top Co-Authors

Avatar

Mingfu Wang

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinyu Ma

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Chen

Hunan Normal University

View shared research outputs
Top Co-Authors

Avatar

Zheng Sun

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi-Ming Che

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Clive Lo

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge