Minghong Cai
Polar Research Institute of China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Minghong Cai.
Environmental Science & Technology | 2012
Axel Möller; Renate Sturm; Zhiyong Xie; Minghong Cai; Jianfeng He; Ralf Ebinghaus
Organophosphorus compounds (OPs) being applied as flame retardants and plasticizers were investigated in airborne particles over the Pacific, Indian, Arctic, and Southern Ocean. Samples taken during two polar expeditions in 2010/11, one from East Asia to the high Arctic (CHINARE 4) and another from East Asia toward the Indian Ocean to the Antarctic (CHINARE 27), were analyzed for three halogenated OPs (tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCPP) and tris(1,3-dichloro-2-isopropyl) phosphate (TDCP)), four alkylated OPs (tri-n-butyl phosphate (TnBP), tri-iso-butyl phosphate (TiBP), tris(2-butoxyethyl)phosphate (TBEP), and tris(2-ethylhexyl) phosphate (TEHP)), and triphenyl phosphate (TPhP). The sum of the eight investigated OPs ranged from 230 to 2900 pg m(-3) and from 120 to 1700 pg m(-3) during CHINARE 4 and CHINARE 27, respectively. TCEP and TCPP were the predominating compounds, both over the Asian seas as well as in the polar regions, with concentrations from 19 to 2000 pg m(-3) and 22 to 620 pg m(-3), respectively. Elevated concentrations were observed in proximity to the Asian continent enhanced by continental air masses. They decreased sharply toward the open oceans where they remained relatively stable. This paper shows the first occurrence of OPs over the global oceans proving that they undergo long-range atmospheric transport over the global oceans toward the Arctic and Antarctica.
Environmental Science & Technology | 2011
Axel Möller; Zhiyong Xie; Minghong Cai; Guangcai Zhong; Peng Huang; Minggang Cai; Renate Sturm; Jianfeng He; Ralf Ebinghaus
Marine boundary layer air and seawater samples taken during a polar expedition cruise from East China Sea to the Arctic were analyzed in order to compare the occurrence, distribution, and fate of the banned polybrominated diphenyl ethers (PBDEs) with their brominated alternatives as well as the chlorinated Dechloranes. The sum of PBDEs (∑(10)PBDEs) in the atmosphere ranged from 0.07 to 8.1 pg m(-3) with BDE-209 being the dominating congener and from not detected (n.d.) to 0.6 pg L(-1) in seawater. Alternate brominated flame retardants (BFRs), especially hexabromobenzene (HBB), (2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), pentabromotoluene (PBT), 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EHTBB), bis-(2-ethylhexyl)-tetrabromophthalate (TBPH), were detected in higher concentrations than PBDEs, even in the high Arctic (0.6 to 15.4 pg m(-3) for sum of alternate BFRs), indicating the change of PBDEs toward alternate BFRs in the environmental predominance. In addition, Dechlorane Plus (DP) as well as Dechlorane 602, 603, and 604 were detected both in the atmosphere and in seawater. The highest concentrations as well as the highest compound variability were observed in East Asian samples suggesting the Asian continent as source of these compounds in the marine environment. The air-seawater exchange indicates strong deposition, especially of alternate BFRs, as well as dry particle-bound deposition of BDE-209 into the ocean.
Environmental Science & Technology | 2012
Axel Möller; Zhiyong Xie; Minghong Cai; Renate Sturm; Ralf Ebinghaus
The occurrence, distribution, and temperature dependence in the marine atmosphere of several alternative brominated flame retardants (BFRs), Dechlorane Plus (DP) and polybrominated diphenyl ethers (PBDEs) were investigated during a sampling cruise from the East Indian Archipelago toward the Indian Ocean and further to the Southern Ocean. Elevated concentrations were observed over the East Indian Archipelago, especially of the non-PBDE BFR hexabromobenzene (HBB) with concentrations up to 26 pg m(-3) which were found to be related to continental air masses from the East Indian Archipelago. Other alternative BFRs- pentabromotoulene (PBT), pentabromobenzene (PBBz), and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE)-were elevated, too, with concentrations up to 2.8, 4.3, and 2.3 pg m(-3), respectively. DP was detected from 0.26 to 11 pg m(-3) and bis-(2-ethylhexyl)-tetrabromophthalate (TBPH) ranged from not detected (nd) to 2.8 pg m(-3), respectively. PBDEs ranged from nd to 6.6 pg m(-3) (Σ(10)PBDEs) with the highest individual concentrations for BDE-209. The approach of Clausius-Clapeyron (CC) plots indicates that HBB is dominated by long-range atmospheric transport at lower temperatures over the Indian and Southern Ocean, while volatilization processes and additional atmospheric emissions dominate at higher temperatures. In contrast, BDE-28 and -47 are dominated by long-range transport without fresh emissions over the entire cruise transect and temperature range, indicating limited fresh emissions of the meanwhile classic PBDEs.
Environmental Science & Technology | 2012
Minghong Cai; Zhen Zhao; Zhigao Yin; Lutz Ahrens; Peng Huang; Minggang Cai; Haizhen Yang; Jianfeng He; Renate Sturm; Ralf Ebinghaus; Zhiyong Xie
Perfluoroalkyl compounds (PFCs) were determined in 22 surface water samples (39-76°N) and three sea ice core and snow samples (77-87°N) collected from North Pacific to the Arctic Ocean during the fourth Chinese Arctic Expedition in 2010. Geographically, the average concentration of ∑PFC in surface water samples were 560 ± 170 pg L(-1) for the Northwest Pacific Ocean, 500 ± 170 pg L(-1) for the Arctic Ocean, and 340 ± 130 pg L(-1) for the Bering Sea, respectively. The perfluoroalkyl carboxylates (PFCAs) were the dominant PFC class in the water samples, however, the spatial pattern of PFCs varied. The C(5), C(7) and C(8) PFCAs (i.e., perfluoropentanoate (PFPA), perfluoroheptanoate (PFHpA), and perfluorooctanoate (PFOA)) were the dominant PFCs in the Northwest Pacific Ocean while in the Bering Sea the PFPA dominated. The changing in the pattern and concentrations in Pacific Ocean indicate that the PFCs in surface water were influenced by sources from the East-Asian (such as Japan and China) and North American coast, and dilution effect during their transport to the Arctic. The presence of PFCs in the snow and ice core samples indicates an atmospheric deposition of PFCs in the Arctic. The elevated PFC concentration in the Arctic Ocean shows that the ice melting had an impact on the PFC levels and distribution. In addition, the C(4) and C(5) PFCAs (i.e., perfluorobutanoate (PFBA), PFPA) became the dominant PFCs in the Arctic Ocean indicating that PFBA is a marker for sea ice melting as the source of exposure.
Environmental Science & Technology | 2012
Guangcai Zhong; Zhiyong Xie; Minghong Cai; Axel Möller; Renate Sturm; Jianhui Tang; Gan Zhang; Jianfeng He; Ralf Ebinghaus
Surface seawater and marine boundary layer air samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China Sea to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic air samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the Sea of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi Seas. The dissolved CUPs in ocean water ranged widely from <MDL to 111 pg/L. Latitudinal trends of α-endosulfan, chlorpyrifos, and dicofol in seawater were roughly consistent with their latitudinal trends in air. Trifluralin in seawater was relatively high in the Sea of Japan (35.2° N) and evenly distributed between 36.9 and 72.5° N, but it remained below the detection limit at the highest northern latitudes in Chukchi Sea. In contrast with other CUPs, concentrations of chlorothalonil and dacthal were more abundant in Chukchi Sea and in East Asia. The air-sea gas exchange of CUPs was generally dominated by net deposition. Latitudinal trends of fugacity ratios of α-endosulfan, chlorothalonil, and dacthal showed stronger deposition of these compounds in East Asia than in Chukchi Sea, while trifluralin showed stronger deposition in Chukchi Sea (-455 ± 245 pg/m(2)/day) than in the North Pacific (-241 ± 158 pg/m(2)/day). Air-sea gas exchange of chlorpyrifos varied from net volatilizaiton in East Asia (<40° N) to equilibrium or net deposition in the North Pacific and the Arctic.
Chemosphere | 2015
Zhibo Lu; Luning Song; Zhen Zhao; Yuxin Ma; Juan Wang; Haizhen Yang; Hongmei Ma; Minghong Cai; Garry Codling; Ralf Ebinghaus; Zhiyong Xie; John P. Giesy
Spatial distributions of perfluoroalkyl substances (PFASs) were investigated in surface waters in Shanghai, Jiangsu and Zhejiang Provinces of eastern China during 2011. A total of 39 samples of surface waters, including 29 rivers, 6 lakes and 4 reservoirs were collected. High performance liquid chromatography/negative electrospray ionization-tandem mass spectrometry (HPLC/(-)ESI-MS/MS) was used to identify and quantify PFASs. Concentrations of PFAS were greater in Shanghai than that in Zhejiang Province. Concentrations of the sum of PFASs (∑PFASs) in Shanghai and Kunshan ranged from 39 to 212 ng L(-1), while in Zhejiang Province, concentrations of ∑PFASs ranged from 0.68 to 146 ng L(-1). Perfluorooctanoic acid (PFOA) was the prevalent PFAS in Shanghai. In contrast, PFOA and perfluorohexanoic acid (PFHxA) were the prevalent PFASs in Zhejiang Province. Concentrations of perfluorooctane sulfonate (PFOS) ranged from <0.07 to 9.7 ng L(-1). Annual mass of ∑PFASs transported by rivers that flow into the East China Sea were calculated to be more than 4000 kg PFASs. Correlation analyses between concentrations of individual PFASs showed the correlation between PFHxA and PFOA was positive, while the correlation between PFHxA and perfluorooctane sulfonamide (FOSA) was negative in Shanghai, which indicated that PFHxA and PFOA have common sources. Principal component analysis (PCA) was employed to identify important components or factors that explain different compounds, and results showed that PFHxA and FOSA dominated factor loadings.
Chemosphere | 2012
Qingquan Hong; Yun Wang; Xiao-Jun Luo; She-Jun Chen; Jigang Chen; Minghong Cai; Minggang Cai; Bi-Xian Mai
The spatial distribution and potential source of polychlorinated biphenyls (PCBs) in surface sediments from Bering Sea, Chukchi Sea, and Canada Basin and the relationship between PCBs and sedimentary properties including grain size, water content, loss on ignition, total organic carbon, and black carbon were explored. ΣPCBs (the sum of the detected PCB congeners) concentrations fluctuated in the study area, ranging from 22-150, 60-640 and 24-600 pg g(-1) dry weight for the Bering Sea, Chukchi Sea, and Canada Basin. A similar homologue pattern was observed at different locations, with tri-chlorinated PCBs being the dominant homologue, implying that the PCBs came mainly from the atmospheric transportation and deposition and ocean current transportation. No apparent co-relationships between PCB concentrations and sediment properties were obtained, indicating that the distribution of PCBs was not only controlled by their source, but also by the multi-factors such as atmospheric transport and depositing, mixing, partitioning and sorption in the water column and sediments.
Marine Pollution Bulletin | 2015
Hendrik Wolschke; Xiang-Zhou Meng; Zhiyong Xie; Ralf Ebinghaus; Minghong Cai
Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), are frequently detected in biota from Antarctica, whereas no data are available for their replacements, such as novel flame retardants (N-FRs). This study presented the occurrence of several N-FRs, PBDEs, and PCBs in tissue samples of an Antarctic rock cod (Trematomus bernacchii), a young gentoo penguin (Pygoscelis papua), and a brown skua (Stercorarius antarcticus) collected from King George Island. The total concentrations of N-FRs (ΣN-FRs; mean: 931 pg/g dry weight (dw)) were comparable to PBDEs (Σ8PBDEs; 681 pg/gdw), which were much lower than PCBs (ΣDL-PCBs; 12,800 pg/gdw). Overall, skua contained two to three orders of magnitude higher contamination than penguin and fish. In the future, more attention should be focused on the fate of N-FRs in Antarctica, where usages have increased since PBDEs were banned. To our knowledge, this is the first report of N-FRs in biota from Antarctica.
Journal of Geophysical Research | 2015
Yuxin Ma; Crispin J. Halsall; John D. Crosse; Carola Graf; Minghong Cai; Jianfeng He; Guoping Gao; Kevin C. Jones
Concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OC pesticides), and polybrominated diphenyl ethers (PBDEs) are reported in surficial sediments sampled along cruise transects from the Bering Sea to the central Arctic Ocean. OCs and PCBs all had significantly higher concentrations in the relatively shallow water ( 500 m) of the Bering Sea and Arctic Ocean (e.g., Canada Basin ΣPCB 149u2009±u2009102 pg g−1 dw). Concentrations were similar to, or slightly lower than, studies from the 1990s, indicating a lack of a declining trend. PBDEs (excluding BDE-209) displayed very low concentrations (e.g., range of median values, 3.5–6.6 pg/g dw). In the shelf areas, the sediments comprised similar proportions of silt and clay, whereas the deep basin sediments were dominated by clay, with a lower total organic carbon (TOC) content. While significant positive correlations were observed between persistent organic pollutant (POP) concentrations and TOC (Pearson correlation, ru2009=u20090.66–0.75, p <0.05), the lack of strong correlations, combined with differing chemical profiles between the sediments and technical formulations (and/or marine surface waters), indicate substantial chemical processing during transfer to the benthic environment. Marked differences in sedimentation rates between the shallow and deeper water regions are apparent (the ∼5 cm-depth grab samples collected here representing ∼100 years of accumulation for the shelf sediments and ∼1000 years for the deeper ocean regions), which may bias any comparisons. Nonetheless, the sediments of the shallower coastal arctic seas appear to serve as significant repositories for POPs deposited from surface waters.
Environmental Science & Technology | 2016
Minggang Cai; Mengyang Liu; Qingquan Hong; Jing Lin; Peng Huang; Jiajun Hong; Jun Wang; Wenlu Zhao; Meng Chen; Minghong Cai; Jun Ye
Semivolatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) have the potential to reach pristine environments through long-range transport. To investigate the long-range transport of the PAHs and their fate in Antarctic seawater, dissolved PAHs in the surface waters from the western Pacific to the Southern Ocean (17.5°N to 69.2°S), as well as down to 3500 m PAH profiles in Prydz Bay and the adjacent Southern Ocean, were observed during the 27th Chinese National Antarctic Research Expedition in 2010. The concentrations of Σ9PAH in the surface seawater ranged from not detected (ND) to 21 ng L(-1), with a mean of 4.3 ng L(-1); and three-ring PAHs were the most abundant compounds. Samples close to the Australian mainland displayed the highest levels across the cruise. PAHs originated mainly from pyrogenic sources, such as grass, wood, and coal combustion. Vertical profiles of PAHs in Prydz Bay showed a maximum at a depth of 50 m and less variance with depth. In general, we inferred that the water masses as well as the phytoplankton were possible influencing factors on PAH surface-enrichment depth-depletion distribution. Inventory estimation highlighted the contribution of intermediate and deep seawater on storing PAHs in seawater from Prydz Bay, and suggested that climate change rarely shows the rapid release of the PAHs currently stored in the major reservoirs (intermediate and deep seawater).