Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minglan Guo is active.

Publication


Featured researches published by Minglan Guo.


Fish & Shellfish Immunology | 2012

Antiviral effects of β-defensin derived from orange-spotted grouper (Epinephelus coioides)

Minglan Guo; Jingguang Wei; Xiaohong Huang; Youhua Huang; Qiwei Qin

Defensins are a group of small antimicrobial peptides playing an important role in innate host defense. In this study, a β-defensin cloned from liver of orange-spotted grouper, Epinephelus coioides, EcDefensin, showed a key role in inhibiting the infection and replication of two kinds of newly emerging marine fish viruses, an enveloped DNA virus of Singapore grouper iridovirus (SGIV), and a non-enveloped RNA virus of viral nervous necrosis virus (VNNV). The expression profiles of EcDefensin were significantly (P < 0.001) up-regulated after challenging with Lipopolysaccharide (LPS), SGIV and Polyriboinosinic Polyribocytidylic Acid (polyI:C) in vivo. Immunofluorescence staining observed its intracellular innate immune response to viral infection of SGIV and VNNV. EcDefensin was found to possess dual antiviral activity, inhibiting the infection and replication of SGIV and VNNV and inducting a type I interferon-related response in vitro. Synthetic peptide of EcDefensin (Ec-defensin) incubated with virus or cells before infection reduced the viral infectivity. Ec-defensin drastically decreased SGIV and VNNV titers, viral gene expression and structural protein accumulation. Grouper spleen cells over-expressing EcDefensin (GS/pcDNA-EcDefensin) support the inhibition of viral infection and the upregulation of the expression of host immune-related genes, such as antiviral protein Mx and pro-inflammatory cytokine IL-1β. EcDefensin activated type I IFN and Interferon-sensitive response element (ISRE) in vitro. Reporter genes of IFN-Luc and ISRE-Luc were significantly up-regulated in cells transfected with pcDNA-EcDefenisn after infection with SGIV and VNNV. These results suggest that EcDefensin is importantly involved in host immune responses to invasion of viral pathogens, and open the new avenues for design of antiviral agents in fisheries industry.


Fish & Shellfish Immunology | 2014

Isolation and characterization of tumor necrosis factor receptor-associated factor 6 (TRAF6) from grouper, Epinephelus tauvina

Jingguang Wei; Minglan Guo; Pin Gao; Huasong Ji; Pengfei Li; Yang Yan; Qiwei Qin

Tumor necrosis factor receptor-associated factor 6 (TRAF6) is one of the key adapter molecules in Toll-like receptor signal transduction that triggers downstream cascades involved in innate immunity. In the present study, a TRAF6 (named as Et-TRAF6) was identified from the marine fish grouper, Epinephelus tauvina by RACE PCR. The full-length cDNA of Et-TRAF6 comprised 1949 bp with a 1713 bp open reading frame (ORF) that encodes a putative protein of 570 amino acids. Similar to most TRAF6s, Et-TRAF6 includes one N-terminal RING domain (78aa-116aa), two zinc fingers of TRAF-type (159aa-210aa and 212aa-269aa), one coiled-coil region (370aa-394aa), and one conserved C-terminal meprin and TRAF homology (MATH) domain (401aa-526aa). Quantitative real-time PCR analysis revealed that Et-TRAF6 mRNA is expressed in all tested tissues, with the predominant expression in the stomach and intestine. The expression of Et-TRAF6 was up-regulated in the liver after challenge with Lipoteichoic acid (LTA), Peptidoglycan (PGN), Zymosan, polyinosine-polycytidylic acid [Poly(I:C)] and Polydeoxyadenylic acid · Polythymidylic acid sodium salt [Poly(dA:dT)]. The expression of Et-TRAF6 was also up-regulated in the liver after infection with Vibrio alginolyticus, Singapore grouper iridovirus (SGIV) and grouper nervous necrosis virus (GNNV). Recombinant Et-TRAF6 (rEt-TRAF6) was expressed in Escherichia BL21 (DE3) and purified for mouse anti-Et-TRAF6 serum preparation. Intracellular localization revealed that Et-TRAF6 is distributed in both cytoplasm and nucleus, and predominantly in the cytoplasm. These results together indicated that Et-TRAF6 might be involved in immune responses toward bacterial and virus challenges.


Fish & Shellfish Immunology | 2013

Molecular cloning, characterization of one key molecule of teleost innate immunity from orange-spotted grouper (Epinephelus coioides): Serum amyloid A

Jingguang Wei; Minglan Guo; Huasong Ji; Qiwei Qin

The orange-spotted grouper (Epinephelus coioides), a favorite marine food fish, is widely cultured in China and Southeast Asian countries. However, little is known about its acute phase response (APR) caused by viral diseases. Serum amyloid A (SAA) is a major acute phase protein (APP). In this study, a new SAA homologous (EcSAA) gene was cloned from grouper, E. coioides, by rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA sequence of SAA was 508 bp and contained a 363 bp open reading frame (ORF) coding for a protein of 121 aa. Similar to other fish known SAA genes, the EcSAA gene contained four exons and three introns. Quantitative real-time PCR analysis revealed that EcSAA mRNA is predominately expressed in liver and gill of grouper. Furthermore, the expression of EcSAA was differentially up-regulated in liver after infection with Staphyloccocus aureus, Vibrio vulnificus, Vibrio parahaemolyticus, Saccharomyces cerevisiae and Singapore grouper iridovirus (SGIV). Recombinant EcSAA (rEcSAA) was expressed in Escherichia BL21 (DE3) and purified for mouse anti-EcSAA serum preparation. The rEcSAA fusion protein was demonstrated to bind to all tested bacteria and yeast, and inhibit the replication of SGIV. Overexpression of EcSAA in grouper spleen (GS) cells could also inhibit the replication of SGIV. These results suggest that EcSAA may be an important molecule in the innate immunity of grouper.


Developmental and Comparative Immunology | 2012

Cloning, characterization, and expression analysis of a thioredoxin from orange-spotted grouper (Epinephelus coioides)

Jingguang Wei; Minglan Guo; Huasong Ji; Yang Yan; Zhengliang Ouyang; Xiaohong Huang; Youhua Hang; Qiwei Qin

Thioredoxins (TRXs) are a family of small, highly conserved proteins that are essential for the maintenance of cellular homeostasis. In this study, a thioredoxin gene was cloned from orange-spotted grouper, Epinephelus coioides (designated as Ec-TRX). The full-length cDNA of Ec-TRX was comprised of 767bp with a 327bp open reading frame that encodes a putative protein of 108 amino acids. Quantitative real-time PCR analysis revealed that the Ec-TRX mRNA was distributed abundantly in grouper, E. coioides skin and liver, and the expression in liver was up-regulated after viral challenge with Singapore grouper iridovirus (SGIV). Recombinant Ec-TRX (rEc-TRX) was expressed in Escherichia coli BL21 (DE3) and purified for mouse anti-Ec-TRX serum preparation. The rEc-TRX fusion protein was demonstrated to possess the expected redox activity in enzymatic analysis, and scavenge free radicals and protect supercoiled DNA from oxidative damage induced by a metal-ion catalyzed oxidation reaction. Subcellular localization revealed that Ec-TRX was distributed in both cytoplasm and nucleus. Overexpression of Ec-TRX in grouper spleen (GS) cells could promote the growth of GS cells and inhibit the replication of SGIV. These results suggest that Ec-TRX could function as an important antioxidant in a physiological context, and perhaps is involved in the responses to viral challenge.


Journal of Fish Diseases | 2011

Establishment and characterization of a new cell line derived from kidney of grouper, Epinephelus akaara (Temminck & Schlegel), susceptible to Singapore grouper iridovirus (SGIV)

Jun Gong; Youhua Huang; Xiaohong Huang; Zhengliang Ouyang; Minglan Guo; Qiwei Qin

A marine fish cell line derived from the kidney of red-spotted grouper, Epinephelus akaara, designated as EAGK was established and characterized. The EAGK cells multiplied well in Leibovitzs L-15 medium containing 10% foetal bovine serum at 25 °C and have been subcultured for more than 90 passages. Karyotyping, chromosomal typing and ribosomal RNA (rRNA) genotyping analysis revealed that EAGK had a modal diploid chromosome number of 82 and was a fibroblast cell line originated from grouper. A severe cytopathic effect was observed in EAGK cells incubated with Singapore grouper iridovirus (SGIV), but not with soft-shelled turtle iridovirus, viral nervous necrosis virus or spring viraemia of carp virus. SGIV replication was further confirmed by immunofluorescence, electron microscopy and virus titre determination. Bright fluorescence was observed after transfection with fluorescent protein reporter plasmids, indicating that EAGK cells can be used to identify gene functions in vitro. In addition, the cell organelles including mitochondria and endoplasm reticulum changed and aggregated around virus factories after SGIV infection, suggested that the EAGK cell line could be an important tool for investigation of iridovirus-host interactions.


Fish & Shellfish Immunology | 2013

Identification and characterization of TRP14, a thioredoxin-related protein of 14 kDa from orange-spotted grouper, Epinephelus coioides

Jingguang Wei; Huasong Ji; Minglan Guo; Yang Yan; Qiwei Qin

Thioredoxin (abbreviated as Trx) is an important ubiquitous disulfide reductase, which can protect organisms against various oxidative stresses. In the present study, a thioredoxin-related protein of 14 kDa (named as Ec-TRP14) was identified from the marine fish grouper, Epinephelus coioides by RACE PCR. The full-length cDNA of Ec-TRP14 was comprised of 1066 bp with a 372 bp open reading frame that encodes a putative protein of 123 amino acids. Similar to most TRP14s, Ec-TRP14 contained the conserved motif C-P-D-C. Ec-TRP14 mRNA is predominately expressed in liver, brain and muscle. The expression of Ec-TRP14 was up-regulated in the liver of grouper challenged with SGIV. Ec-TRP14 was recombined and expressed in Escherichia coli BL21 (DE3), and the rEc-Ec-TRP14 fusion protein was demonstrated to possess the antioxidant activity. The grouper spleen (GS) cells were treated with a high concentration of rEc-TRP14 (8.3 μg/ml), which significantly enhanced cells viability under damage caused by viral infection. These results together indicated that Ec-TRP14 could function as an important antioxidant in a physiological context, and might be involved in the responses to viral challenge.


Frontiers in Microbiology | 2016

JNK1 Derived from Orange-Spotted Grouper, Epinephelus coioides, Involving in the Evasion and Infection of Singapore Grouper Iridovirus (SGIV)

Minglan Guo; Jingguang Wei; Xiaohong Huang; Yongcan Zhou; Yang Yan; Qiwei Qin

c-Jun N-terminal kinase (JNK) regulates cellular responses to various extracellular stimuli, environmental stresses, pathogen infections, and apoptotic agents. Here, a JNK1, Ec-JNK1, was identified from orange-spotted grouper, Epinephelus coioides. Ec-JNK1 has been found involving in the immune response to pathogen challenges in vivo, and the infection of Singapore grouper iridovirus (SGIV) and SGIV-induced apoptosis in vitro. SGIV infection activated Ec-JNK1, of which phosphorylation of motif TPY is crucial for its activity. Over-expressing Ec-JNK1 phosphorylated transcription factors c-Jun and promoted the infection and replication of SGIV, while partial inhibition of the phosphorylation of Ec-JNK1 showed the opposite effects by over-expressing the dominant-negative EcJNK1-Δ183-185 mutant. Interestingly, SGIV enhanced the viral infectivity by activating Ec-JNK1 which in turn drastically inhibited the antiviral responses of type 1 IFN, indicating that Ec-JNK1 could be involved in blocking IFN signaling during SGIV infection. In addition, Ec-JNK1 enhanced the activation of AP-1, p53, and NF-κB, and resulted in increasing the levels of SGIV-induced cell death. The caspase 3-dependent activation correlated with the phosphorylation of Ec-JNK1 and contributed to SGIV-induced apoptosis. Taken together, SGIV modulated the phosphorylation of Ec-JNK1 to inactivate the antiviral signaling, enhance the SGIV-induced apoptosis and activate transcription factors for efficient infection and replication. The “positive cooperativity” molecular mechanism mediated by Ec-JNK1 contributes to the successful evasion and infection of iridovirus pathogenesis.


Fish & Shellfish Immunology | 2015

TTRAP is a critical factor in grouper immune response to virus infection.

Jingguang Wei; Ping Zhang; Minglan Guo; Meng Xu; Pengfei Li; Xiuli Chen; Pin Gao; Yang Yan; Shina Wei; Qiwei Qin

TTRAP (TRAF and TNF receptor-associated protein) is latest identified cytosolic protein that serves as a negative regulator for TNF signaling pathway. In this study, a member of TNF superfamily, TTRAP gene (designed as EcTTRAP) was cloned from grouper, Epinephelus coioides. There was an Exo_endo_phos type domain in EcTTRAP, and it was well conserved when compared with other TTRAPs, especially the endonuclease activity related motifs. EcTTRAP exhibited prominent endonuclease activity against the genome DNA from Escherichia coli, Vibrio vulnificus and E. coli JM109. Intracellular localization revealed that EcTTRAP expression distributed in both cytoplasm and nucleus. Real-time PCR analysis indicates that EcTTRAP is expressed in all selective grouper tissues, with the higher expression level in muscle, skin and gills. EcTTRAP was identified as a remarkably (P < 0.01) up-regulated protein responding to Singapore grouper iridovirus (SGIV) infection. Overexpression of EcTTRAP inhibited NF-κB activation, meanwhile the C terminal portion of the protein was found to be responsive domain for the inhibition. Stable transfection of FHM cells with EcTTRAP inhibited apoptosis induced by SGIV. Overexpression of EcTTRAP in grouper spleen (GS) cells inhibited the replication of SGIV. The present results provided new evidences for the potential roles of such molecule in E. coioides, and further confirmed the existence of TTRAP modulated TNF signaling pathway in grouper.


Developmental and Comparative Immunology | 2016

c-Jun N-terminal kinases 3 (JNK3) from orange-spotted grouper, Epinephelus coioides, inhibiting the replication of Singapore grouper iridovirus (SGIV) and SGIV-induced apoptosis.

Minglan Guo; Jingguang Wei; Yongcan Zhou; Qiwei Qin

C-Jun N-terminal kinases (JNKs), a subgroup of serine-threonine protein kinases that activated by phosphorylation, are involve in physiological and pathophysiological processes. JNK3 is one of JNK proteins involved in JNK3 signaling transduction. In the present study, two JNK3 isoforms, Ec-JNK3 X1 and Ec-JNK3 X2, were cloned from orange-spotted grouper, Epinephelus coioides. Both Ec-JNK3 X1 and Ec-JNK3 X2 were mainly expressed in liver, gill, skin, brain and muscle of juvenile grouper. The relative expression of Ec-JNK3 X2 mRNA was much higher in muscle and gill than that of Ec-JNK3 X1. Isoform-specific immune response to challenges was revealed by the expression profiles in vivo. Immunofluorescence staining indicated that JNK3 was localized in the cytoplasm of grouper spleen (GS) cells and shown immune response to SGIV infection in vitro. Over-expressing Ec-JNK3 X1 and/or Ec-JNK3 X2 inhibited the SGIV infection and replication and the SGIV-induced apoptosis. To achieve the antiviral and anti-apoptosis activities, JNK3 promoted the activation of genes ISRE and type I IFN in the antiviral IFN signaling pathway, and inhibited the activation of transcription factors NF-κB and p53 relating to apoptosis, respectively. Ec-JNK3 X2 showed stronger activities in antivirus and anti-apoptosis than that of Ec-JNK3 X1. Our results not only define the characterization of JNK3 but also reveal new immune functions and the molecular mechanisms of JNK3 on iridoviruses infection and the virus-induced apoptosis.


Frontiers in Microbiology | 2017

Temperature-Driven Local Acclimatization of Symbiodnium Hosted by the Coral Galaxea fascicularis at Hainan Island, China

Guowei Zhou; Lin Cai; Yuanchao Li; Haoya Tong; Lei Jiang; Yuyang Zhang; Xinming Lei; Minglan Guo; Sheng Liu; Pei-Yuan Qian; Hui Huang

The success of coral reef ecosystems largely depends on mutualistic symbiosis between scleractinian corals and the dinoflagellate photosymbiont Symbiodinium spp. However, further investigation is needed to elucidate the flexibility of coral-algae associations in response to environmental changes. In this study, we applied a molecular method (high-throughput internal transcribed spacer 2 region of ribosomal RNA gene amplicon sequencing) to explore diversity and flexibility of Symbiodinium associated with Galaxea fascicularis, an ecologically important scleractinian coral species collected at five locations around Hainan Island, South China Sea. The results revealed a high diversity of Symbiodinium subclades with C2r and D17 being dominant in G. fascicularis. Clade D Symbiodinium occurred most frequently in habitats where the annual average sea surface temperatures are the highest, suggesting that temperature is an important factor in determining Symbiodinium D abundance in G. fascicularis. The distribution of coral-Symbiodinium associations are possibly mediated by trade-off mechanisms which change the relative abundance of Symbiodinium clades/subclades under different environmental conditions. These findings provide further evidence that reef-building corals such as G. fascicularis can shuffle their symbionts to cope with environmental changes, and have implications for our understanding of the ecology of flexible coral-algal symbiosis.

Collaboration


Dive into the Minglan Guo's collaboration.

Top Co-Authors

Avatar

Qiwei Qin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jingguang Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yang Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaohong Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhengliang Ouyang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guowei Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hui Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lei Jiang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge