Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhengliang Ouyang is active.

Publication


Featured researches published by Zhengliang Ouyang.


BMC Genomics | 2009

Complete sequence determination of a novel reptile iridovirus isolated from soft-shelled turtle and evolutionary analysis of Iridoviridae

Youhua Huang; Xiaohong Huang; Hong Liu; Jie Gong; Zhengliang Ouyang; Huachun Cui; Jianhao Cao; Yingtao Zhao; Xiu-Jie Wang; Yulin Jiang; Qiwei Qin

BackgroundSoft-shelled turtle iridovirus (STIV) is the causative agent of severe systemic diseases in cultured soft-shelled turtles (Trionyx sinensis). To our knowledge, the only molecular information available on STIV mainly concerns the highly conserved STIV major capsid protein. The complete sequence of the STIV genome is not yet available. Therefore, determining the genome sequence of STIV and providing a detailed bioinformatic analysis of its genome content and evolution status will facilitate further understanding of the taxonomic elements of STIV and the molecular mechanisms of reptile iridovirus pathogenesis.ResultsWe determined the complete nucleotide sequence of the STIV genome using 454 Life Science sequencing technology. The STIV genome is 105 890 bp in length with a base composition of 55.1% G+C. Computer assisted analysis revealed that the STIV genome contains 105 potential open reading frames (ORFs), which encode polypeptides ranging from 40 to 1,294 amino acids and 20 microRNA candidates. Among the putative proteins, 20 share homology with the ancestral proteins of the nuclear and cytoplasmic large DNA viruses (NCLDVs). Comparative genomic analysis showed that STIV has the highest degree of sequence conservation and a colinear arrangement of genes with frog virus 3 (FV3), followed by Tiger frog virus (TFV), Ambystoma tigrinum virus (ATV), Singapore grouper iridovirus (SGIV), Grouper iridovirus (GIV) and other iridovirus isolates. Phylogenetic analysis based on conserved core genes and complete genome sequence of STIV with other virus genomes was performed. Moreover, analysis of the gene gain-and-loss events in the family Iridoviridae suggested that the genes encoded by iridoviruses have evolved for favoring adaptation to different natural host species.ConclusionThis study has provided the complete genome sequence of STIV. Phylogenetic analysis suggested that STIV and FV3 are strains of the same viral species belonging to the Ranavirus genus in the Iridoviridae family. Given virus-host co-evolution and the phylogenetic relationship among vertebrates from fish to reptiles, we propose that iridovirus might transmit between reptiles and amphibians and that STIV and FV3 are strains of the same viral species in the Ranavirus genus.


Fish & Shellfish Immunology | 2011

Molecular cloning and characterization of two novel hepcidins from orange-spotted grouper, Epinephelus coioides

Jinggeng Zhou; Jingguang Wei; Dan Xu; Huachun Cui; Yang Yan; Zhengliang Ouyang; Xiaohong Huang; Youhua Huang; Qiwei Qin

Orange-spotted grouper, Epinephelus coioides is one of the most important economic species of marine-cultured fish in China and Southeast Asia countries. However, very little information of the innate immune mechanisms against microbial pathogens is available in grouper, Epinephelus sp. Hepcidin, as an antimicrobial peptide (AMP), is a very important component in the innate immune system and widespread in fish. In this study, two novel types of hepcidin gene (designated EC-hepcidin1 and EC-hepcidin2) were cloned from E. coioides. They consist of open reading frames (ORFs) of 267 bp and 263 bp encoding the putative peptides of 88 and 87 amino acids, respectively. The homologous identity of deduced amino acid sequences between EC-hepcidin1 and EC-hepcidin2 is up to 79%, and predicted mature regions of both them have four cysteines residues. Genomic DNAs of both EC-hepcidin1 and EC-hepcidin2 consist of three exons and two introns. RT-PCR results showed that EC-hepcidin1 transcript was most abundant in liver and less in stomach. However, the transcript of EC-hepcidin2 was only detected in liver. The expressions of both EC-hepcidins were up-regulated by microbial and viral challenges, and iron overload, respectively, and EC-hepcidin1 was more responsive. The growth of Gram-negative bacterium of Vibrio vulnificus and Gram-positive bacterium of Staphylococcus aureus was inhibited by synthetic EC-hepcidins, and EC-hepcidin1 displayed stronger antimicrobial activity. The replication of Singapore grouper iridovirus (SGIV) was inhibited in the EC-hepcidin1 and EC-hepcidin2 over-expressed stable transfected fish cell lines (GS/pcDNA-Hep1, GS/pcDNA-Hep2) indicative of the antiviral activity of EC-hepcidins. These data should offer important information on the antimicrobial and antiviral roles of EC-hepcidins, and will be help to the better understanding of molecular mechanisms of grouper innate immunity.


Apoptosis | 2011

Singapore grouper iridovirus, a large DNA virus, induces nonapoptotic cell death by a cell type dependent fashion and evokes ERK signaling

Xiaohong Huang; Youhua Huang; Zhengliang Ouyang; Lixiao Xu; Yang Yan; Huachun Cui; Xin Han; Qiwei Qin

Virus induced cell death, including apoptosis and nonapoptotic cell death, plays a critical role in the pathogenesis of viral diseases. Singapore grouper iridovirus (SGIV), a novel iridovirus of genus Ranavirus, causes high mortality and heavy economic losses in grouper aquaculture. Here, using fluorescence microscopy, electron microscopy and biochemical assays, we found that SGIV infection in host (grouper spleen, EAGS) cells evoked nonapoptotic programmed cell death (PCD), characterized by appearance of cytoplasmic vacuoles and distended endoplasmic reticulum, in the absence of DNA fragmentation, apoptotic bodies and caspase activation. In contrast, SGIV induced typical apoptosis in non-host (fathead minnow, FHM) cells, as evidenced by caspase activation and DNA fragmentation, suggesting that SGIV infection induced nonapoptotic cell death by a cell type dependent fashion. Furthermore, viral replication was essential for SGIV induced nonapoptotic cell death, but not for apoptosis. Notably, the disruption of mitochondrial transmembrane potential (ΔΨm) and externalization of phosphatidylserine (PS) were not detected in EAGS cells but in FHM cells after SGIV infection. Moreover, the extracellular signal-regulated kinase (ERK) signaling was involved in SGIV infection induced nonapoptotic cell death and viral replication. This is a first demonstration of ERK-mediated nonapoptotic cell death induced by a DNA virus. These findings contribute to understanding the mechanisms of iridovirus pathogenesis.


Developmental and Comparative Immunology | 2011

Identification and functional characterization of an interferon regulatory factor 7-like (IRF7-like) gene from orange-spotted grouper, Epinephelus coioides

Huachun Cui; Yang Yan; Jingguang Wei; Xiaohong Huang; Youhua Huang; Zhengliang Ouyang; Qiwei Qin

Interferon regulatory factor (IRF) 7 plays a crucial role in modulating cellular responses to viral infection and cytokines, including interferons (IFNs). In the present study, a novel IRF7 gene (designated as EcIRF7) was cloned and characterized from orange-spotted grouper, Epinephelus coioides. The full-length EcIRF7 cDNA is composed of 2089 bp and encodes a polypeptide of 433 amino acids with 81% identity to IRF7 of Siniperca chuatsi, and the genomic DNA of EcIRF7 consists of 9 exons and 8 introns, with a length of approximately 5629 bp. EcIRF7 contains three conserved domains including a DNA-binding domain (DBD), an IRF associated domain (IAD) and a serine-rich domain, all of which are highly conserved across species. Recombinant EcIRF7 was expressed in Escherichia coli BL21 (DE3) and purified for mouse anti-EcIRF7 serum preparation. Realtime quantitative PCR (RT-qPCR) analysis revealed a broad expression of EcIRF7, with a relative strong expression in spleen, kidney, skin and intestine. The expression of EcIRF7 was differentially up-regulated after stimulation with Vibrio vulnificus, Staphylococcus aureus and Singapore grouper iridovirus (SGIV). EcIRF7 showed similar intracellular localization pattern to those of mammalian and chicken, and translocated into nucleus after SGIV infection. Further more, EcIRF7 was proved to be capable of activating zebrafish type I IFN promoter and inhibiting the replication of SGIV in grouper spleen (GS) cells. These results suggest that EcIRF7 is potentially involved in grouper immune responses to invasion of viral and bacterial pathogens.


Fish & Shellfish Immunology | 2015

Identification of orange-spotted grouper (Epinephelus coioides) interferon regulatory factor 3 involved in antiviral immune response against fish RNA virus.

Youhua Huang; Xiaohong Huang; Jia Cai; Zhengliang Ouyang; Shina Wei; Jingguang Wei; Qiwei Qin

Interferon regulatory factor 3 (IRF3) is an important transcription factor which regulates the expression of interferon (IFN) and IFN-stimulated genes (ISGs) following virus recognition. In this study, a novel IRF3 gene was cloned from grouper Epinephelus coioides (EcIRF3) and its effects against Singapore grouper iridovirus (SGIV) and red spotted grouper nervous necrosis virus (RGNNV) was investigated. The full-length of EcIRF3 cDNA was composed of 2513 bp and encoded a polypeptide of 458 amino acids which shared 82% identity with European seabass (Dicentrarchus labrax). EcIRF3 contained three conserved domains including a DNA-binding domain (DBD), an IRF associated domain (IAD) and a serine-rich domain. Expression profile analysis revealed that EcIRF3 was abundant in head kidney, kidney, spleen and gill. Upon different stimuli in vitro, the transcript of EcIRF3 was significantly up-regulated after RGNNV infection or treatment with polyinosin-polycytidylic acid (poly I:C). During SGIV infection, the increase of the EcIRF3 transcription was only detected at the late stage, suggesting that EcIRF3 was differently regulated by different stimuli. Immune fluorescence assay indicated that the fluorescence signal of EcIRF3 was increased significantly after infection with RGNNV or treatment with poly I:C, but moderately at the late stage of SGIV infection. Reporter gene assay showed that EcIRF3 activated zebrafish type I IFN and type III IFN promoter in vitro. The viral gene transcription and virus production of RGNNV were significantly decreased in EcIRF3 overexpressing cells. However, the ectopic expression of EcIRF3 did not affect the gene transcription and virus production of SGIV. Moreover, the mRNA expression levels of type I IFN and IFN-inducible genes (MxI, ISG15 and ISG56) were increased in RGNNV infected EcIRF3 overexpressing cells compared to empty vector transfected cells. Together, our results demonstrated that IFN immune response mediated by grouper IRF3 was exerted crucial roles for fish RNA virus, but not for DNA virus replication.


Fish & Shellfish Immunology | 2010

Molecular cloning, characterization and expression analysis of a C-type lectin (Ec-CTL) in orange-spotted grouper, Epinephelus coioides

Jingguang Wei; Dan Xu; Jinggeng Zhou; Huachun Cui; Yang Yan; Zhengliang Ouyang; Jie Gong; Youhua Huang; Xiaohong Huang; Qiwei Qin

C-type lectins play crucial roles in pathogen recognition, innate immunity, and cell-cell interactions. In this study, a new C-type lectin (Ec-CTL) gene was cloned from grouper, Epinephelus coioides by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of Ec-CTL was composed of 840 bp with a 651 bp open reading frame (ORF) that encodes a 216-residue protein. The deduced amino acid sequence of Ec-CTL possessed all conserved features crucial for the fundamental structure, such as the four cysteine residues (Cys(71), Cys(152), Cys(167), Cys(175)) involved in the formation of disulphide bridges and the potential Ca(2+)/carbohydrate-binding sites. Ec-CTL contains a signal peptide and a single carbohydrate recognition domain (CRD). The genomic DNA of the gene consists of three exons and two introns. Ec-CTL showed high similarity of 54% to the C-type lectin of killifish Fundulus heteroclitus. Ec-CTL mRNA is predominately expressed in liver and skin, and lower expressed in kidney, intestine, heart, brain and spleen. The expression of Ec-CTL was differentially up-regulated in orange-spotted grouper challenged with Saccharomyces cerevisiae, Vibrio vulnificus, Staphyloccocus aureus and Singapore grouper iridovirus (SGIV). Recombinant mature Ec-CTL (rEc-CTL) was expressed in E. coli BL21, purified and characterized as a typical Ca(2+)-dependent carbohydrate-binding protein possessing hemagglutinating activity. It bound to all examined bacterial and yeast strains, and aggregated with S. cerevisiae, V. vulnificus and S. aureus in a Ca(2+)-dependent manner.


Journal of General Virology | 2011

Roles of stress-activated protein kinases in the replication of Singapore grouper iridovirus and regulation of the inflammatory responses in grouper cells.

Xiaohong Huang; Youhua Huang; Zhengliang Ouyang; Jia Cai; Yang Yan; Qiwei Qin

Stress-activated protein kinases (SAPKs), including p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK), are usually activated in response to different environmental stimuli, including virus infection. In the present study, the roles of SAPKs during Singapore grouper iridovirus (SGIV) infection were investigated in fish cells. The results showed that increased phosphorylation of JNK1/2 and p38 MAPK occurred during active replication of SGIV in grouper cell cultures. Moreover, downstream effectors (c-Jun, MAPK-activated protein kinase 2, p53, activator protein 1, Myc and nuclear factor of activated T cells) were activated after SGIV infection, suggesting that SGIV replication activated the JNK and p38 MAPK signalling pathways. Notably, using specific inhibitors, it was found that viral gene transcripts, protein expression and viral titres were not affected by inhibition of p38 MAPK but were suppressed significantly by inhibiting JNK1/2 activation. In addition, transcription of grouper immune genes including interferon regulatory factor 1, interleukin-8 and tumour necrosis factor alpha (TNF-α) were regulated by JNK, whilst only TNF-α was regulated by p38 MAPK. It is proposed that the JNK pathway is important for SGIV replication and modulates the inflammatory responses during virus infection.


Developmental and Comparative Immunology | 2012

Immunogenicity and protective effects of inactivated Singapore grouper iridovirus (SGIV) vaccines in orange-spotted grouper, Epinephelus coioides

Zhengliang Ouyang; Peiran Wang; Xiaohong Huang; Jia Cai; Youhua Huang; Shina Wei; Huasong Ji; Jingguang Wei; Yongcan Zhou; Qiwei Qin

Vaccination is one of the best methods against viral diseases. In this study, experimental inactivated Singapore grouper iridovirus (SGIV) vaccines were prepared, and immunogenicity and protection against virus infection of the vaccines were investigated in orange-spotted grouper, Epinephelus coioides. Two kinds of vaccines, including β-propiolactone (BPL) inactivated virus at 4°C for 12 h and formalin inactivated virus at 4°C for 12 d, was highly protective against the challenge at 30-day post-vaccination and produced relative percent of survival rates of 91.7% and 100%, respectively. These effective vaccinations induced potent innate immune responses mediated by pro-inflammatory cytokines and type I interferon (IFN)-stimulated genes (ISGs). It is noteworthy that ISGs, such as Mx and ISG15, were up-regulated only in the effective vaccine groups, which suggested that type I IFN system may be the functional basis of early anti-viral immunity. Moreover, effective vaccination also significantly up-regulated of the expression of MHC class I gene and produced substantial amount of specific serum antibody at 4 weeks post-vaccination. Taken together, our results clearly demonstrated that effective vaccination in grouper induced an early, nonspecific antiviral immunity, and later, a specific immune response involving both humoral and cell-mediated immunity.


Virus Research | 2010

Identification and characterization of Singapore grouper iridovirus (SGIV) ORF162L, an immediate-early gene involved in cell growth control and viral replication

Liqun Xia; Haiying Liang; Youhua Huang; Zhengliang Ouyang; Qiwei Qin

Singapore grouper iridovirus (SGIV) is a major pathogen resulting in heavy economic losses to grouper aquaculture. In this study, SGIV ORF162L encoding a putative homolog of ICP46 was identified and characterized. Interestingly, ICP46 could be found in all sequenced iridoviruses and is considered as a core gene of the family Iridoviridae. SGIV ICP46 was classified as an immediate-early (IE) gene during in vitro infection using drug inhibition analysis, reverse transcription polymerase chain reaction and Western blot analysis. Subcellular localization revealed that SGIV ICP46 was distributed predominantly in the cytoplasm. Furthermore, SGIV ICP46 proved to be a structural protein of the nucleocapsid; its overexpression could promote the growth of grouper embryonic cells and contribute to SGIV replication. This is the first report of the characterization of a putative ICP46 homolog and these results should offer important insights into the pathogenesis of iridoviruses.


Fish & Shellfish Immunology | 2015

Antiviral role of grouper STING against iridovirus infection

Youhua Huang; Zhengliang Ouyang; Wei Wang; Yepin Yu; Pengfei Li; Sheng Zhou; Shina Wei; Jingguang Wei; Xiaohong Huang; Qiwei Qin

Stimulator of interferon genes (STING, also known as MITA, ERIS, MPYS or TMEM173) has been identified as a central component in the innate immune response to cytosolic DNA and RNA derived from different pathogens. However, the detailed role of STING during fish iridovirus infection still remained largely unknown. Here, the STING homolog from grouper Epinephelus coioides (EcSTING) was cloned and its effects on IFN response and antiviral activity were investigated. The full-length EcSTING cDNA was composed of 1590 bp and encoded a polypeptide of 409 amino acids with 80% identity to STING homolog from large yellow croaker. Amino acid alignment analysis indicated that EcSTING contained 4 predicated transmembrane motifs (TMs) in the N terminal, and a C-terminal domain (CTD) which consisted of a dimerization domain (DD), c-di-GMP-binding domain (CBD) and a C-terminal tail (CTT). Expression profile analysis revealed that EcSTING was abundant in gill, spleen, brain, skin, and liver. Upon different stimuli in vivo, the EcSTING transcript was dramatically up-regulated after challenging with Singapore grouper iridovirus (SGIV), lipopolysaccharide (LPS) and polyinosin-polycytidylic acid (poly I:C). Reporter gene assay showed that EcSTING activated ISRE, zebrafish type I IFN and type III IFN promoter in vitro. Mutant analysis showed that IFN promoter activity was mostly mediated by the phosphorylation sites at serine residue S379 and S387. Moreover, EcSTING induced type I and III IFN promoter activity could be impaired by overexpression of EcIRF3-DN or EcIRF7-DN, suggesting that EcSTING mediated IFN response in IRF3/IRF7 dependent manner. In addition, the cytopathic effect (CPE) progression of SGIV infection and viral protein synthesis was significantly inhibited by overexpression of EcSTING, and the inhibitory effect was abolished in serine residue S379 and S387 mutant transfected cells. Together, our results demonstrated that EcSTING might be an important regulator of grouper innate immune response against iridovirus infection.

Collaboration


Dive into the Zhengliang Ouyang's collaboration.

Top Co-Authors

Avatar

Qiwei Qin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaohong Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Youhua Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jingguang Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shina Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yang Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jia Cai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huachun Cui

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Jie Gong

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Minglan Guo

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge