Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingming Wu is active.

Publication


Featured researches published by Mingming Wu.


Lab on a Chip | 2007

A hydrogel-based microfluidic device for the studies of directed cell migration

Shing-Yi Cheng; Steven Heilman; Max Wasserman; Shivaun D. Archer; Michael L. Shuler; Mingming Wu

We have developed a hydrogel-based microfluidic device that is capable of generating a steady and long term linear chemical concentration gradient with no through flow in a microfluidic channel. Using this device, we successfully monitored the chemotactic responses of wildtype Escherichia coli (suspension cells) to alpha-methyl-DL-aspartate (attractant) and differentiated HL-60 cells (a human neutrophil-like cell line that is adherent) to formyl-Met-Leu-Phe (f-MLP, attractant). This device advances the current state of the art in microchemotaxis devices in that (1) it demonstrates the validity of using hydrogels as the building material for a microchemotaxis device; (2) it demonstrates the potential of the hydrogel based microfluidic device in biological experiments since most of the proteins and nutrients essential for cell survival are readily diffusible in hydrogel; (3) it is capable of applying chemical stimuli independently of mechanical stimuli; (4) it is straightforward to make, and requires very basic tools that are commonly available in biological labs. This device will also be useful in controlling the chemical and mechanical environment during the formation of tissue engineered constructs.


Nature Nanotechnology | 2012

A mechanical metamaterial made from a DNA hydrogel

Jong Bum Lee; Songming Peng; Dayong Yang; Young Hoon Roh; Hisakage Funabashi; Nokyoung Park; Edward J. Rice; Liwei Chen; Rong Long; Mingming Wu; Dan Luo

Metamaterials are artificial substances that are structurally engineered to have properties not typically found in nature. To date, almost all metamaterials have been made from inorganic materials such as silicon and copper, which have unusual electromagnetic or acoustic properties that allow them to be used, for example, as invisible cloaks, superlenses or super absorbers for sound. Here, we show that metamaterials with unusual mechanical properties can be prepared using DNA as a building block. We used a polymerase enzyme to elongate DNA chains and weave them non-covalently into a hydrogel. The resulting material, which we term a meta-hydrogel, has liquid-like properties when taken out of water and solid-like properties when in water. Moreover, upon the addition of water, and after complete deformation, the hydrogel can be made to return to its original shape. The meta-hydrogel has a hierarchical internal structure and, as an example of its potential applications, we use it to create an electric circuit that uses water as a switch.


Lab on a Chip | 2006

A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis

Jinpian Diao; Lincoln C. Young; Sue Kim; Elizabeth A. Fogarty; Steven Heilman; Peng Zhou; Michael L. Shuler; Mingming Wu; Matthew P. DeLisa

We have developed a prototype three-channel microfluidic chip that is capable of generating a linear concentration gradient within a microfluidic channel and is useful in the study of bacterial chemotaxis. The linear chemical gradient is established by diffusing a chemical through a porous membrane located in the side wall of the channel and can be established without through-flow in the channel where cells reside. As a result, movement of the cells in the center channel is caused solely by the cells chemotactic response and not by variations in fluid flow. The advantages of this microfluidic chemical linear gradient generator are (i) its ability to produce a static chemical gradient, (ii) its rapid implementation, and (iii) its potential for highly parallel sample processing. Using this device, wildtype Escherichia coli strain RP437 was observed to move towards an attractant (e.g., l-asparate) and away from a repellent (e.g., glycerol) while derivatives of RP437 that were incapable of motility or chemotaxis showed no bias of the bacterias distribution. Additionally, the degree of chemotaxis could be easily quantified using this assay in conjunction with fluorescence imaging techniques, allowing for estimation of the chemotactic partition coefficient (CPC) and the chemotactic migration coefficient (CMC). Finally, using this approach we demonstrate that E. coli deficient in autoinducer-2-mediated quorum sensing respond to the chemoattractant l-aspartate in a manner that is indistinguishable from wildtype cells suggesting that chemotaxis is insulated from this mode of cell-cell communication.


Physics of Fluids | 2002

Experimental studies on the shape and path of small air bubbles rising in clean water

Mingming Wu; Morteza Gharib

This Letter reports experiments on the shape and path of air bubbles (diameter range 0.1–0.2 cm) rising in clean water. We find that bubbles in this diameter range have two steady shapes, a sphere and an ellipsoid, depending on the size of the capillary tube from which they detach. The spherical bubbles move significantly slower than the ellipsoidal ones of equivalent volume. Bubbles with diameter less than about 0.15 cm rise rectilinearly. The larger spherical bubbles follow zigzag paths while the larger ellipsoidal bubbles follow spiral paths.


Physics of Fluids | 2004

Scaling law in liquid drop coalescence driven by surface tension

Mingming Wu; Thomas Cubaud; Chih-Ming Ho

This Letter reports experimental results on the coalescence of two liquid drops driven by surface tension. Using a high speed imaging system, we studied the early-time evolution of the liquid bridge that is formed upon the initial contact of two liquid drops in air. Experimental results confirmed the scaling law that was proposed by Eggers et al. based on a simple and yet elegant physical argument. We found that the liquid bridge radius rb follows the scaling law rb∝t1/2 in the inertial regime. Further experiments demonstrate that such scaling law is robust when using fluids of different viscosities and surface tensions. The prefactor of the scaling law, rb/t1/2, is shown to be ∝R1/4, where R is the inverse of the drop curvature at the point of contact. The dimensionless prefactor is measured to be in the range of 1.03–1.29, which is lower than 1.62, a prefactor predicted by the numerical simulation of Duchemin et al. for inviscid drop coalescence.


Biophysical Journal | 2009

Logarithmic Sensing in Escherichia coli Bacterial Chemotaxis

Yevgeniy Kalinin; L. L. Jiang; Yuhai Tu; Mingming Wu

We studied the response of swimming Escherichia coli (E. coli) bacteria in a comprehensive set of well-controlled chemical concentration gradients using a newly developed microfluidic device and cell tracking imaging technique. In parallel, we carried out a multi-scale theoretical modeling of bacterial chemotaxis taking into account the relevant internal signaling pathway dynamics, and predicted bacterial chemotactic responses at the cellular level. By measuring the E. coli cell density profiles across the microfluidic channel at various spatial gradients of ligand concentration grad[L] and the average ligand concentration [L] near the peak chemotactic response region, we demonstrated unambiguously in both experiments and model simulation that the mean chemotactic drift velocity of E. coli cells increased monotonically with grad [L]/[L] or approximately grad(log[L])--that is E. coli cells sense the spatial gradient of the logarithmic ligand concentration. The exact range of the log-sensing regime was determined. The agreements between the experiments and the multi-scale model simulation verify the validity of the theoretical model, and revealed that the key microscopic mechanism for logarithmic sensing in bacterial chemotaxis is the adaptation kinetics, in contrast to explanations based directly on ligand occupancy.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19

Ulrike Haessler; Marco Pisano; Mingming Wu; Melody A. Swartz

Dendritic cell (DC) homing to the lymphatics and positioning within the lymph node is important for adaptive immunity, and is regulated by gradients of CCL19 and CCL21, ligands for CCR7. Despite the importance of DC chemotaxis, it is not well understood how DCs interpret gradients of these chemokines in a complex 3D microenvironment. Here, we use a microfluidic device that allows rapid establishment of stable gradients in 3D matrices to show that DC chemotaxis in 3D can respond to CCR7 ligand gradients as small as 0.4%, which helps explain how DCs sense lymphatic vessels in an environment where broadcast distance for chemokine diffusion is hindered by convective flows into the vessel. Interestingly, DCs displayed similar sensitivities to both chemokines at small gradients (≤ 60 nM/mm), but migrated more efficiently towards higher gradients of CCL21, which unlike CCL19 binds strongly to matrix proteoglycans and signals without the need for internalization. Furthermore, cells preferentially migrated towards CCL21 when exposed to equal and opposite gradients of CCL21 and CCL19 simultaneously, even when matrix-binding of CCL21 was prevented. Although these ligands have similar binding affinity to CCR7, our results demonstrate that, in a 3D environment, CCL21 is a more potent directional cue for DC migration than CCL19. These findings provide new quantitative insight into DC chemotaxis in a physiological 3D environment and suggest how CCL19 and CCL21 may signal differently to fine-tune DC homing and positioning within the lymphatic system. These results also have broad relevance to other systems of cell chemotaxis, which remain poorly understood in the 3D context.


Applied and Environmental Microbiology | 2007

Assessing Adhesion Forces of Type I and Type IV Pili of Xylella fastidiosa Bacteria by Use of a Microfluidic Flow Chamber

Leonardo De La Fuente; Emilie Montanes; Yizhi Meng; Yaxin Li; Thomas J. Burr; Harvey C. Hoch; Mingming Wu

ABSTRACT Xylella fastidiosa, a bacterium responsible for Pierces disease in grapevines, possesses both type I and type IV pili at the same cell pole. Type IV pili facilitate twitching motility, and type I pili are involved in biofilm development. The adhesiveness of the bacteria and the roles of the two pili types in attachment to a glass substratum were evaluated using a microfluidic flow chamber in conjunction with pilus-defective mutants. The average adhesion force necessary to detach wild-type X. fastidiosa cells was 147 ± 11 pN. Mutant cells possessing only type I pili required a force of 204 ± 22 pN for removal, whereas cells possessing only type IV pili required 119 ± 8 pN to dislodge these cells. The experimental results demonstrate that microfluidic flow chambers are useful and convenient tools for assessing the drag forces necessary for detaching bacterial cells and that with specific pilus mutants, the role of the pilus type can be further assessed.


Applied and Environmental Microbiology | 2006

Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique

Mingming Wu; John W. Roberts; Sue Kim; Donald L. Koch; Matthew P. DeLisa

ABSTRACT An ability to monitor bacterial locomotion and collective dynamics is crucial to our understanding of a number of well-characterized phenotypes including biofilm formation, chemotaxis, and virulence. Here, we report the tracking of multiple swimming Escherichia coli cells in three spatial dimensions and at single-cell resolution using a novel three-dimensional (3D) defocused particle tracking (DPT) method. The 3D trajectories were generated for wild-type Escherichia coli strain RP437 as well as for isogenic derivatives that display smooth swimming due to a cheA deletion (strain RP9535) or incessant tumbling behavior due to a cheZ deletion (strain RP1616). The 3D DPT method successfully differentiated these three modes of locomotion and allowed direct calculation of the diffusion coefficient for each strain. As expected, we found that the smooth swimmer diffused more readily than the wild type, and both the smooth swimmer and the wild-type cells exhibited diffusion coefficients that were at least two orders of magnitude larger than that of the tumbler. Finally, we found that the diffusion coefficient increased with increasing cell density, a phenomenon that can be attributed to the hydrodynamic disturbances caused by neighboring bacteria.


Annals of Biomedical Engineering | 2012

Microfluidics for Mammalian Cell Chemotaxis

Beum Jun Kim; Mingming Wu

The emerging field of micro-technology has opened up new possibilities for exploring cellular chemotaxis in real space and time, and at single cell resolution. Chemotactic cells sense and move in response to chemical gradients and play important roles in a number of physiological and pathological processes, including development, immune responses, and tumor cell invasions. Due to the size proximity of the microfluidic device to cells, microfluidic chemotaxis devices advance the traditional macro-scale chemotaxis assays in two major directions: one is to build well defined and stable chemical gradients at cellular length scales, and the other is to provide a platform for quantifying cellular responses at both cellular and molecular levels using advanced optical imaging systems. Here, we present a critical review on the designing principles, recent development, and potential capabilities of the microfluidic chemotaxis assay for solving problems that are of importance in the biomedical engineering field.

Collaboration


Dive into the Mingming Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge