Mingshu Zhang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mingshu Zhang.
Science | 2015
Dong Li; Lin Shao; Bi-Chang Chen; Xi Zhang; Mingshu Zhang; Brian Moses; Daniel E. Milkie; Jordan R. Beach; John A. Hammer; Mithun Pasham; Tomas Kirchhausen; Michelle A. Baird; Michael W. Davidson; Pingyong Xu; Eric Betzig
Adding to the super-resolution arsenal Structured illumination microscopy (SIM) uses light intensities that are orders of magnitude lower than other super-resolution methods. SIM is also far faster over cellular-sized fields of view. Li et al. used two approaches to improve the resolution of SIM to allow live cell imaging of dynamic cellular processes, including endocytosis and cytoskeleton remodeling. The contrast in performance between SIM and other techniques is due to a few key differences. Defining the practical resolution at the limited signal-to-noise ratios necessary for live cell imaging will require better imaging metrics. Science, this issue 10.1126/science.aab3500 Super-resolution imaging of fast dynamic processes in living cells is facilitated by improvements to structured illumination microscopy. INTRODUCTION Various methods of super-resolution (SR) fluorescence microscopy have the potential to follow the dynamic nanoscale interactions of specific macromolecular assemblies in living cells. However, this potential is often left unfulfilled, either owing to the method’s inability to follow these processes at the speeds dictated by nature or because they require intense light that can substantially perturb the very physiology one hopes to study. An exception is structured illumination microscopy (SIM), which can image live cells far faster and with orders of magnitude less light than required for other SR approaches. However, SIM’s resolution is usually limited to only a twofold gain beyond conventional optical microscopes, or ~100 nm with visible light. RATIONALE We endeavored to find ways to extend SIM to the sub-100-nm regime while retaining, to the greatest extent possible, the advantages that make it the preferred SR method for live-cell imaging. Our first solution used an ultrahigh numerical aperture (NA) lens and total internal reflection fluorescence (TIRF) to achieve 84-nm resolution at subsecond acquisition speeds over hundreds of time points in multiple colors near the basal plasma membrane. Our second exploited the spatially patterned activation of a recently developed, reversibly photoswitchable fluorescent protein to reach 45- to 62-nm resolution, also at subsecond acquisition, over ∼10 to 40 time points. RESULTS We used high-NA TIRF-SIM to image the dynamic associations of cortical filamentous actin with myosin IIA, paxillin, or clathrin, as well as paxillin with vinculin and clathrin with transferrin receptors. Thanks to the combination of high spatial and temporal resolution, we were able to measure the sizes of individual clathrin-coated pits through their initiation, growth, and internalization. We were also able to relate pit size to lifetime, identify and characterize localized hot spots of pit generation, and describe the interaction of actin with clathrin and its role in accelerating endocytosis. With nonlinear SIM by use of patterned activation (PA NL-SIM), we monitored the remodeling of the actin cytoskeleton and the dynamics of caveolae at the cell surface. By combining TIRF-SIM and PA NL-SIM for two-color imaging, we followed the dynamic association of actin with α-actinin in expanding filopodia and membrane ruffles and characterized shape changes in and the transport of early endosomes. Last, by combining PA NL-SIM with lattice light sheet microscopy, we observed, in three dimensions and across the entire volume of whole cells, the dynamics of the actin cytoskeleton, the fusion and fission of mitochondria, and the trafficking of vesicles to and from the Golgi apparatus, each at axial resolution fivefold better than that of conventional widefield microscopy. In addition, through direct experimental comparisons, we demonstrated that the resolution for our methods is comparable with or better than other SR approaches yet allowed us to image at far higher speeds, and for far longer durations. To understand why this is so, we developed a detailed theoretical model showing that our methods transmit the information encoded in spatial frequencies beyond the diffraction limit with much greater strength than do other alternatives and hence require far fewer photons emitted from the specimen, using far less intense light. CONCLUSION High-NA TIRF-SIM and PA NL-SIM fill an unmet need for minimally invasive tools to image live cells in the gap between the 100-nm resolution traditionally associated with SIM and the sub-60-nm regime of protein-specific structural imaging served by single-molecule localization microscopy. Two approaches for improved live-cell imaging at sub-100-nm resolution. (Left) Association of cortical actin (purple) with clathrin-coated pits (green), the latter seen as rings (inset) at 84-nm resolution via a combination of total internal reflection fluorescence and structured illumination microscopy at ultrahigh numerical aperture (high-NA TIRF-SIM). (Right) Progression of resolution improvement across the actin cytoskeleton of a COS-7 cell, from conventional, diffraction-limited TIRF (220-nm resolution), to TIRF-SIM (97-nm resolution), and nonlinear SIM based on the patterned activation of a reversibly photoswitchable fluorescent protein (PA NL-SIM, 62 nm resolution). (Left and right represent single frames from time-lapse movies over 91 and 30 frames, respectively. Scale bars, 2 μm (left); 3 μm (right). Super-resolution fluorescence microscopy is distinct among nanoscale imaging tools in its ability to image protein dynamics in living cells. Structured illumination microscopy (SIM) stands out in this regard because of its high speed and low illumination intensities, but typically offers only a twofold resolution gain. We extended the resolution of live-cell SIM through two approaches: ultrahigh numerical aperture SIM at 84-nanometer lateral resolution for more than 100 multicolor frames, and nonlinear SIM with patterned activation at 45- to 62-nanometer resolution for approximately 20 to 40 frames. We applied these approaches to image dynamics near the plasma membrane of spatially resolved assemblies of clathrin and caveolin, Rab5a in early endosomes, and α-actinin, often in relationship to cortical actin. In addition, we examined mitochondria, actin, and the Golgi apparatus dynamics in three dimensions.
Nature Methods | 2012
Mingshu Zhang; Hao Chang; Yongdeng Zhang; Junwei Yu; Lijie Wu; Wei Ji; Juan-Juan Chen; Bei Liu; Jingze Lu; Yingfang Liu; Jun-Long Zhang; Pingyong Xu; Tao Xu
Monomeric (m)Eos2 is an engineered photoactivatable fluorescent protein widely used for super-resolution microscopy. We show that mEos2 forms oligomers at high concentrations and forms aggregates when labeling membrane proteins, limiting its application as a fusion partner. We solved the crystal structure of tetrameric mEos2 and rationally designed improved versions, mEos3.1 and mEos3.2, that are truly monomeric, are brighter, mature faster and exhibit higher photon budget and label density.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Hao Chang; Mingshu Zhang; Wei Ji; Juan-Juan Chen; Yongdeng Zhang; Bei Liu; Jingze Lu; Jun-Long Zhang; Pingyong Xu; Tao Xu
Reversibly switchable fluorescent proteins (RSFPs) have attracted widespread interest for emerging techniques including repeated tracking of protein behavior and superresolution microscopy. Among the limited number of RSFPs available, only Dronpa is widely employed for most cell biology applications due to its monomeric and other favorable photochemical properties. Here we developed a series of monomeric green RSFPs with beneficial optical characteristics such as high photon output per switch, high photostability, a broad range of switching rate, and pH-dependence, which make them potentially useful for various applications. One member of this series, mGeos-M, exhibits the highest photon budget and localization precision potential among all green RSFPs. We propose mGeos-M as a candidate to replace Dronpa for applications such as dynamic tracking, dual-color superresolution imaging, and optical lock-in detection.
Nature Structural & Molecular Biology | 2015
Xiaoyu Yang; Shen Wang; Yi Sheng; Mingshu Zhang; Wenjuan Zou; Lijie Wu; Lijun Kang; Josep Rizo; Rongguang Zhang; Tao Xu; Cong Ma
UNC-13-Munc13s have a central function in synaptic-vesicle priming through their MUN domains. However, it is unclear whether this function arises from the ability of the MUN domain to mediate the transition from the Munc18-1–closed syntaxin-1 complex to the SNARE complex in vitro. The crystal structure of the rat Munc13-1 MUN domain now reveals an elongated, arch-shaped architecture formed by α-helical bundles, with a highly conserved hydrophobic pocket in the middle. Mutation of two residues (NF) in this pocket abolishes the stimulation caused by the Munc13-1 MUN domain on SNARE-complex assembly and on SNARE-dependent proteoliposome fusion in vitro. Moreover, the same mutation in UNC-13 abrogates synaptic-vesicle priming in Caenorhabditis elegans neuromuscular junctions. These results support the notion that orchestration of syntaxin-1 opening and SNARE-complex assembly underlies the central role of UNC-13-Munc13s in synaptic-vesicle priming.
ACS Nano | 2015
Xi Zhang; Xuanze Chen; Zhiping Zeng; Mingshu Zhang; Yujie Sun; Peng Xi; Jianxin Peng; Pingyong Xu
Reversibly switchable fluorescent proteins (RSFPs) can be effectively used for super-resolution optical fluctuation imaging (SOFI) based on the switching and fluctuation of single molecules. Several properties of RSFPs strongly influence the quality of SOFI images. These properties include (i) the averaged fluorescence intensity in the fluctuation state, (ii) the on/off contrast ratio, (iii) the photostability, and (iv) the oligomerization tendency. The first three properties determine the fluctuation range of the imaged pixels and the SOFI signal, which are of essential importance to the spatial resolution, and the last may lead to artificial aggregation of target proteins. The RSFPs that are currently used for SOFI are low in averaged fluorescence intensity in the fluctuation state, photostability, and on/off contrast ratio, thereby limiting the range of application of SOFI in biological super-resolution imaging. In this study, we developed a novel monomeric green RSFP termed Skylan-S, which features very high photostability, contrast ratio, and averaged fluorescence intensity in the fluctuation state. Taking advantage of the excellent optical properties of Skylan-S, a 4-fold improvement in the fluctuation range of the imaged pixels and higher SOFI resolution can be obtained compared with Dronpa. Furthermore, super-resolution imaging of the actin or tubulin structures and clathrin-coated pits (CCPs) in living U2OS cells labeled with Skylan-S was demonstrated using the SOFI technique. Overall, Skylan-S developed with outstanding photochemical properties is promising for long-time SOFI imaging with high spatial-temporal resolution.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Xi Zhang; Mingshu Zhang; Dong Li; Wenting He; Jianxin Peng; Eric Betzig; Pingyong Xu
Significance To understand the cell, it is necessary to study its dynamics at high resolution in space and time in a way that does not adversely affect it. Superresolution microscopy offers the requisite spatial resolution but usually at the cost of slow imaging speed and excessive damage. In this work, a fluorescent protein is described that enables substantial improvements in the speed, duration, and noninvasiveness of live-cell superresolution microscopy. Two long-standing problems for superresolution (SR) fluorescence microscopy are high illumination intensity and long acquisition time, which significantly hamper its application for live-cell imaging. Reversibly photoswitchable fluorescent proteins (RSFPs) have made it possible to dramatically lower the illumination intensities in saturated depletion-based SR techniques, such as saturated depletion nonlinear structured illumination microscopy (NL-SIM) and reversible saturable optical fluorescence transition microscopy. The characteristics of RSFPs most critical for SR live-cell imaging include, first, the integrated fluorescence signal across each switching cycle, which depends upon the absorption cross-section, effective quantum yield, and characteristic switching time from the fluorescent “on” to “off” state; second, the fluorescence contrast ratio of on/off states; and third, the photostability under excitation and depletion. Up to now, the RSFPs of the Dronpa and rsEGFP (reversibly switchable EGFP) families have been exploited for SR imaging. However, their limited number of switching cycles, relatively low fluorescence signal, and poor contrast ratio under physiological conditions ultimately restrict their utility in time-lapse live-cell imaging and their ability to reach the desired resolution at a reasonable signal-to-noise ratio. Here, we present a truly monomeric RSFP, Skylan-NS, whose properties are optimized for the recently developed patterned activation NL-SIM, which enables low-intensity (∼100 W/cm2) live-cell SR imaging at ∼60-nm resolution at subsecond acquisition times for tens of time points over broad field of view.
Biochemical and Biophysical Research Communications | 2011
Lin Liu; Mingshu Zhang; Zhiping Xia; Pingyong Xu; Liangyi Chen; Tao Xu
Nephronophthisis (NPHP) is the most frequent genetic cause of end-stage renal failure in children and young adults. NPHP8/RPGRIP1L is a novel ciliary gene that, when mutated, in addition to causing NPHP, also causes Joubert syndrome (JBTS) and Meckel syndrome (MKS). The exact function of NPHP8 and how defects in NPHP8 lead to human diseases are poorly understood. Here, we studied the Caenorhabditis elegans homolog nphp-8 (C09G5.8) and explored the possible function of NPHP-8 in ciliated sensory neurons. We determined the gene structure of nphp-8 through rapid amplification of cDNA ends (RACE) analysis and discovered an X-box motif that had been previously overlooked. Moreover, NPHP-8 co-localized with NPHP-4 at the transition zone at the base of cilia. Mutation of nphp-8 led to abnormal dye filling (Dyf) and shorter cilia lengths in a subset of ciliary neurons. In addition, chemotaxis to several volatile attractants was significantly impaired in nphp-8 mutants. Our data suggest that NPHP-8/RPGRIP1L plays an important role in cilia formation and cilia-mediated chemosensation in a cell type-specific manner.
Biochemical and Biophysical Research Communications | 2014
Liyang Han; Yanhua Zhao; Xi Zhang; Jianxin Peng; Pingyong Xu; Shuangyan Huan; Mingshu Zhang
Red fluorescent proteins (RFPs) are useful tools for live cell and multi-color imaging in biological studies. However, when labeling proteins in secretory pathway, many RFPs are prone to form artificial puncta, which may severely impede their further uses. Here we report a fast and easy method to evaluate RFPs fusion properties by attaching RFPs to an environment sensitive membrane protein Orai1. In addition, we revealed that intracellular artificial puncta are actually colocalized with lysosome, thus besides monomeric properties, pKa value of RFPs is also a key factor for forming intracellular artificial puncta. In summary, our current study provides a useful guide for choosing appropriate RFP for labeling secretory membrane proteins. Among RFPs tested, mOrange2 is highly recommended based on excellent monomeric property, appropriate pKa and high brightness.
Scientific Reports | 2016
Xiaolan Xu; Sher Ali; Yufeng Li; Haijie Yu; Mingshu Zhang; Jingze Lu; Tao Xu
2-Aminoethoxydiphenyl borate (2-APB) elicits potentiation current (Ip) on Ca2+ release-activated Ca2+ (CRAC) channels. An accurate investigation into this modulation mechanism would reveal how STIM1-dependent channel gating is enhanced, and benefit the future immune enhancer development. Here, we directly probed the pore diameter of CRAC channels and found that 2-APB enlarged the pore size of STIM1-activated Orai1 from 3.8 to 4.6 Å. We demonstrated that ions with small sizes, i.e., Ca2+ and Na+, mediated prominent 2-APB-induced Ip on the wildtype (WT) Orai1 channels of narrow pore sizes, while conducted decreased or no Ip on Orai1-V102C/A/G mutant channels with enlarged pore diameters. On the contrary, large Cs+ ions blocked the WT channels, while displayed large 2-APB induced Ip on pore-enlarged Orai1-V102C/A/G mutant channels, and the potentiation ratio was highest on Orai1-V102C with an intermediate pore size. Furthermore, we showed that 2-APB potentiated Cs+ current on constitutively active Orai1-V102C/A/G mutants independent of STIM1. Our data suggest that 2-APB directly dilates the pore of open Orai1 channels, both ion size and pore diameter jointly determine the amplitude of Ip on CRAC channels, and the generation of Ip requires the open state of Orai1, not STIM1 itself.
Protein & Cell | 2013
Yongdeng Zhang; Lusheng Gu; Hao Chang; Wei Ji; Yan Chen; Mingshu Zhang; Lu Yang; Bei Liu; Liangyi Chen; Tao Xu
The resolution of single molecule localization imaging techniques largely depends on the precision of localization algorithms. However, the commonly used Gaussian function is not appropriate for anisotropic dipoles because it is not the true point spread function. We derived the theoretical point spread function of tilted dipoles with restricted mobility and developed an algorithm based on an artificial neural network for estimating the localization, orientation and mobility of individual dipoles. Compared with fitting-based methods, our algorithm demonstrated ultrafast speed and higher accuracy, reduced sensitivity to defocusing, strong robustness and adaptability, making it an optimal choice for both two-dimensional and three-dimensional super-resolution imaging analysis.