Yongdeng Zhang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yongdeng Zhang.
Nature Methods | 2012
Mingshu Zhang; Hao Chang; Yongdeng Zhang; Junwei Yu; Lijie Wu; Wei Ji; Juan-Juan Chen; Bei Liu; Jingze Lu; Yingfang Liu; Jun-Long Zhang; Pingyong Xu; Tao Xu
Monomeric (m)Eos2 is an engineered photoactivatable fluorescent protein widely used for super-resolution microscopy. We show that mEos2 forms oligomers at high concentrations and forms aggregates when labeling membrane proteins, limiting its application as a fusion partner. We solved the crystal structure of tetrameric mEos2 and rationally designed improved versions, mEos3.1 and mEos3.2, that are truly monomeric, are brighter, mature faster and exhibit higher photon budget and label density.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Hao Chang; Mingshu Zhang; Wei Ji; Juan-Juan Chen; Yongdeng Zhang; Bei Liu; Jingze Lu; Jun-Long Zhang; Pingyong Xu; Tao Xu
Reversibly switchable fluorescent proteins (RSFPs) have attracted widespread interest for emerging techniques including repeated tracking of protein behavior and superresolution microscopy. Among the limited number of RSFPs available, only Dronpa is widely employed for most cell biology applications due to its monomeric and other favorable photochemical properties. Here we developed a series of monomeric green RSFPs with beneficial optical characteristics such as high photon output per switch, high photostability, a broad range of switching rate, and pH-dependence, which make them potentially useful for various applications. One member of this series, mGeos-M, exhibits the highest photon budget and localization precision potential among all green RSFPs. We propose mGeos-M as a candidate to replace Dronpa for applications such as dynamic tracking, dual-color superresolution imaging, and optical lock-in detection.
Scientific Reports | 2015
Bei Liu; Yanhong Xue; Wei Zhao; Yan Chen; Chunyan Fan; Lusheng Gu; Yongdeng Zhang; Xiang Zhang; Lei Sun; Xiaojun Huang; Wei Ding; Fei Sun; Wei Ji; Tao Xu
We demonstrate the use of cryogenic super-resolution correlative light and electron microscopy (csCLEM) to precisely determine the spatial relationship between proteins and their native cellular structures. Several fluorescent proteins (FPs) were found to be photoswitchable and emitted far more photons under our cryogenic imaging condition, resulting in higher localization precision which is comparable to ambient super-resolution imaging. Vitrified specimens were prepared by high pressure freezing and cryo-sectioning to maintain a near-native state with better fluorescence preservation. A 2-3-fold improvement of resolution over the recent reports was achieved due to the photon budget performance of screening out Dronpa and optimized imaging conditions, even with thin sections which is at a disadvantage when calculate the structure resolution from label density. We extended csCLEM to mammalian cells by introducing cryo-sectioning and observed good correlation of a mitochondrial protein with the mitochondrial outer membrane at nanometer resolution in three dimensions.
Journal of Biological Chemistry | 2015
Chen Ji; Yongdeng Zhang; Pingyong Xu; Tao Xu; Xuelin Lou
Background: Phosphatidylinositides in the plasma membrane (PM) are pivotal for cellular functions. Results: Superresolution imaging reveals homogeneous distribution of PI(4,5)P2, PI4P, and PI(3,4,5)P3 in the major area of the PM. Conclusion: Phosphatidylinositides detected by PH domains are uniformly distributed in the major regions of the PM, with limited concentration gradients. Significance: This result may imply a new working model of phosphatidylinositides at nanometer scale. Both phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are independent plasma membrane (PM) determinant lipids that are essential for multiple cellular functions. However, their nanoscale spatial organization in the PM remains elusive. Using single-molecule superresolution microscopy and new photoactivatable fluorescence probes on the basis of pleckstrin homology domains that specifically recognize phosphatidylinositides in insulin-secreting INS-1 cells, we report that the PI(4,5)P2 probes exhibited a remarkably uniform distribution in the major regions of the PM, with some sparse PI(4,5)P2-enriched membrane patches/domains of diverse sizes (383 ± 14 nm on average). Quantitative analysis revealed a modest concentration gradient that was much less steep than previously thought, and no densely packed PI(4,5)P2 nanodomains were observed. Live-cell superresolution imaging further demonstrated the dynamic structural changes of those domains in the flat PM and membrane protrusions. PI4P and phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) showed similar spatial distributions as PI(4,5)P2. These data reveal the nanoscale landscape of key inositol phospholipids in the native PM and imply a framework for local cellular signaling and lipid-protein interactions at a nanometer scale.
Biophysical Journal | 2015
Tianyi Yuan; Jingze Lu; Jinzhong Zhang; Yongdeng Zhang; Liangyi Chen
Total internal reflection fluorescence microscope has often been used to study the molecular mechanisms underlying vesicle exocytosis. However, the spatial occurrence of the fusion events within a single cell is not frequently explored due to the lack of sensitive and accurate computer-assisted programs to analyze large image data sets. Here, we have developed an image analysis platform for the nonbiased identification of different types of vesicle fusion events with high accuracy in different cell types. By performing spatiotemporal analysis of stimulus-evoked exocytosis in insulin-secreting INS-1 cells, we statistically prove that individual vesicle fusion events are clustered at hotspots. This spatial pattern disappears upon the disruption of either the actin or the microtubule network; this disruption also severely inhibits evoked exocytosis. By demonstrating that newcomer vesicles are delivered from the cell interior to the surface membrane for exocytosis, we highlight a previously unappreciated mechanism in which the cytoskeleton-dependent transportation of secretory vesicles organizes exocytosis hotspots in endocrine cells.
Scientific Reports | 2017
Yongdeng Zhang; Yonghao Zhao; Wenyan Zhang; Jiachun Lu; Juejun Hu; W. T. Huo; Peng Zhang
Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.
Developmental Cell | 2015
Tianyi Yuan; Lin Liu; Yongdeng Zhang; Lisi Wei; Shiqun Zhao; Xiaolu Zheng; Xiaoshuai Huang; Jérôme Boulanger; Charles Gueudry; Jingze Lu; Lihan Xie; Wen Du; Weijian Zong; Lu Yang; Jean Salamero; Yanmei Liu; Liangyi Chen
Many receptor-mediated endocytic processes are mediated by constitutive budding of clathrin-coated pits (CCPs) at spatially randomized sites before slowly pinching off from the plasma membrane (60-100 s). In contrast, clathrin-mediated endocytosis (CME) coupled with regulated exocytosis in excitable cells occurs at peri-exocytic sites shortly after vesicle fusion (∼10 s). The molecular mechanism underlying this spatiotemporal coupling remains elusive. We show that coupled endocytosis makes use of pre-formed CCPs, which hop to nascent fusion sites nearby following vesicle exocytosis. A dynamic cortical microtubular network, anchored at the cell surface by the cytoplasmic linker-associated protein on microtubules and the LL5β/ELKS complex on the plasma membrane, provides the track for CCP hopping. Local diacylglycerol gradients generated upon exocytosis guide the direction of hopping. Overall, the CCP-cytoskeleton-lipid interaction demonstrated here mediates exocytosis-coupled fast recycling of both plasma membrane and vesicular proteins, and it is required for the sustained exocytosis during repetitive stimulations.
Biophysical Journal | 2014
Lusheng Gu; Yi Sheng; Yan Chen; Hao Chang; Yongdeng Zhang; Pingping Lv; Wei Ji; Tao Xu
Single molecule fitting-based superresolution microscopy achieves sub-diffraction-limit image resolution but suffers from a need for long acquisition times to gather enough molecules. Several methods have recently been developed that analyze high molecule density images but most are only applicable to two dimensions. In this study, we implemented a high-density superresolution localization algorithm based on compressed sensing and a biplane approach that provides three-dimensional information about molecules, achieving super-resolution imaging at higher molecule densities than those achieved using the conventional single molecule fitting method.
Protein & Cell | 2013
Yongdeng Zhang; Lusheng Gu; Hao Chang; Wei Ji; Yan Chen; Mingshu Zhang; Lu Yang; Bei Liu; Liangyi Chen; Tao Xu
The resolution of single molecule localization imaging techniques largely depends on the precision of localization algorithms. However, the commonly used Gaussian function is not appropriate for anisotropic dipoles because it is not the true point spread function. We derived the theoretical point spread function of tilted dipoles with restricted mobility and developed an algorithm based on an artificial neural network for estimating the localization, orientation and mobility of individual dipoles. Compared with fitting-based methods, our algorithm demonstrated ultrafast speed and higher accuracy, reduced sensitivity to defocusing, strong robustness and adaptability, making it an optimal choice for both two-dimensional and three-dimensional super-resolution imaging analysis.
Protein & Cell | 2013
Mei Han; Hao Chang; Peng Zhang; Tao Chen; Yanhua Zhao; Yongdeng Zhang; Pingsheng Liu; Tao Xu; Pingyong Xu
Lipid droplets, which are conserved across almost all species, are cytoplasmic organelles used to store neutral lipids. Identification of lipid droplet regulators will be conducive to resolving obesity and other fat-associated diseases. In this paper, we selected 11 candidates that might be associated with lipid metabolism in Caenorhabditis elegans. Using a BODIPY 493/503-based flow cytometry screen, 6 negative and 3 positive regulators of fat content were identified. We selected one negative regulator of lipid content, C13C4.5, for future study. C13C4.5 was mainly expressed in the worm intestine. We found that this gene was important for maintaining the metabolism of lipid droplets. Biochemical results revealed that 50% of triacylglycerol (TAG) was lost in C13C4.5 knockout worms. Stimulated Raman scattering (SRS) signals in C13C4.5 mutants showed only 49.6% of the fat content in the proximal intestinal region and 86.3% in the distal intestinal region compared with wild type animals. The mean values of lipid droplet size and intensity in C13C4.5 knockout animals were found to be significantly decreased compared with those in wild type worms. The LMP-1-labeled membrane structures in worm intestines were also enlarged in C13C4.5 mutant animals. Finally, fertility defects were found in C13C4.5(ok2087) mutants. Taken together, these results indicate that C13C4.5 may regulate the fertility of C. elegans by changing the size and fat content of lipid droplets by interfering with lysosomal morphology and function.