Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingzhe Sun is active.

Publication


Featured researches published by Mingzhe Sun.


PLOS ONE | 2014

MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.).

Sunting Wang; Xiaoli Sun; Yoichiro Hoshino; Yang Yu; Bei Jia; Zhong-wen Sun; Mingzhe Sun; Xiangbo Duan; Yanming Zhu

The microRNA319 (miR319) family is conserved among diverse plant species. In rice (Oryza sativa L.), the miR319 gene family is comprised of two members, Osa-miR319a and Osa-miR319b. We found that overexpressing Osa-miR319b in rice resulted in wider leaf blades and delayed development. Here, we focused on the biological function and potential molecular mechanism of the Osa-miR319b gene in response to cold stress in rice. The expression of Osa-miR319b was down-regulated by cold stress, and the overexpression of Osa-miR319b led to an enhanced tolerance to cold stress, as evidenced by higher survival rates and proline content. Also, the expression of a handful of cold stress responsive genes, such as DREB1A/B/C, DREB2A, TPP1/2, was increased in Osa-miR319b transgenic lines. Furthermore, we demonstrated the nuclear localization of the transcription factors, OsPCF6 and OsTCP21, which may be Osa-miR319b-targeted genes. We also showed that OsPCF6 and OsTCP21 expression was largely induced by cold stress, and the degree of induction was obviously repressed in plants overexpressing Osa-miR319b. As expected, the down-regulation of OsPCF6 and OsTCP21 resulted in enhanced tolerance to cold stress, partially by modifying active oxygen scavenging. Taken together, our findings suggest that Osa-miR319b plays an important role in plant response to cold stress, maybe by targeting OsPCF6 and OsTCP21.


Plant and Cell Physiology | 2014

A Glycine Soja 14-3-3 Protein GsGF14o Participates in Stomatal and Root Hair Development and Drought Tolerance in Arabidopsis thaliana

Xiaoli Sun; Xiao Luo; Mingzhe Sun; Chao Chen; Xiaodong Ding; Xuedong Wang; Shanshan Yang; Qingyue Yu; Bowei Jia; Wei Ji; Hua Cai; Yanming Zhu

It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.


Plant Molecular Biology | 2014

A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress.

Xiaoli Sun; Shanshan Yang; Mingzhe Sun; Sunting Wang; Xiaodong Ding; Dan Zhu; Wei Ji; Hua Cai; Chaoyue Zhao; Xuedong Wang; Yanming Zhu

Abstract It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein–protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.


Planta | 2013

A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses

Xiaoli Sun; Mingzhe Sun; Xiao Luo; Xiaodong Ding; Hua Cai; Xi Bai; Xiao-Fei Liu; Yanming Zhu

Receptor such as protein kinases are proposed to work as sensors to initiate signaling cascades in higher plants. However, little is known about the precise functions of receptor such as protein kinases in abiotic stress response in plants, especially in wild soybean. Here, we focused on characterization of the biological functions of a receptor-like cytoplasmic serine/threonine protein kinase gene, GsRLCK, which was previously identified as a putative salt-alkali stress-related gene from the transcriptome profiles of Glycine soja. Bioinformatic analysis showed that GsRLCK protein contained a conserved kinase catalytic domain and two transmembrane domains at the N-terminus, but no typical extracellular domain. Consistently, GsRLCK-eGFP fusion protein was observed on the plasma membrane, but eGFP alone was distributing throughout the cytoplasm in onion epidermal cells. Quantitative real-time PCR analysis revealed the induced expression of GsRLCK by ABA, salt, alkali, and drought stresses. However, the expression levels of GsRLCK seemed to be similar in different tissues, except soybean pod. Phenotypic assays demonstrated that GsRLCK overexpression decreased ABA sensitivity and altered expression levels of ABA-responsive genes. Furthermore, we also found that GsRLCK conferred increased tolerance to salt and drought stresses and increased expression levels of a handful of stress-responsive genes, when overexpressing in Arabidopsis. In a word, we gave exact evidence that GsRLCK was a novel receptor-like cytoplasmic protein kinase and played a crucial role in plant responses to ABA, salt, and drought stresses.


Plant Journal | 2016

A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca(2+) /CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress.

Xiaoli Sun; Mingzhe Sun; Bowei Jia; Zhiwei Qin; Kejun Yang; Chao Chen; Qingyue Yu; Yanming Zhu

Although research has extensively illustrated the molecular basis of plant responses to salt and high-pH stresses, knowledge on carbonate alkaline stress is poor and the specific responsive mechanism remains elusive. We have previously characterized a Glycine soja Ca(2+) /CAM-dependent kinase GsCBRLK that could increase salt tolerance. Here, we characterize a methionine sulfoxide reductase (MSR) B protein GsMSRB5a as a GsCBRLK interactor by using Y2H and BiFc assays. Further analyses showed that the N-terminal variable domain of GsCBRLK contributed to the GsMSRB5a interaction. Y2H assays also revealed the interaction specificity of GsCBRLK with the wild soybean MSRB subfamily proteins, and determined that the BoxI/BoxII-containing regions within GsMSRBs were responsible for their interaction. Furthermore, we also illustrated that the N-terminal basic regions in GsMSRBs functioned as transit peptides, which targeted themselves into chloroplasts and thereby prevented their interaction with GsCBRLK. Nevertheless, deletion of these regions allowed them to localize on the plasma membrane (PM) and interact with GsCBRLK. In addition, we also showed that GsMSRB5a and GsCBRLK displayed overlapping tissue expression specificity and coincident expression patterns under carbonate alkaline stress. Phenotypic experiments demonstrated that GsMSRB5a and GsCBRLK overexpression in Arabidopsis enhanced carbonate alkaline stress tolerance. Further investigations elucidated that GsMSRB5a and GsCBRLK inhibited reactive oxygen species (ROS) accumulation by modifying the expression of ROS signaling, biosynthesis and scavenging genes. Summarily, our results demonstrated that GsCBRLK and GsMSRB5a interacted with each other, and activated ROS signaling under carbonate alkaline stress.


Plant Cell Tissue and Organ Culture | 2013

GsVAMP72, a novel Glycine soja R-SNARE protein, is involved in regulating plant salt tolerance and ABA sensitivity

Xiaoli Sun; Wei Ji; Xiaodong Ding; Xi Bai; Hua Cai; Shanshan Yang; Xue Qian; Mingzhe Sun; Yanming Zhu

Abiotic stress, especially high salinity, is a major threat to agricultural production. It has been well established that SNARE proteins sustain directed vesicle traffic to underpin plant growth and development, yet little is known about the role of SNARE protein in the capacity to withstand abiotic stress, especially in wild soybeans. Here we identified and characterized a GsCBRLK interacting protein, GsVAMP72, which is a putative vesicle-associated membrane protein in Glycine soja. GsVAMP72 protein has a longin domain at its N-terminus, belonging to R-SNARE family. Quantitative real-time (RT) PCR and beta-glucuronidase (GUS) activity assays revealed that the expression of GsVAMP72 was highly and rapidly induced by both high salt and ABA treatments. Overexpression of GsVAMP72 in Arabidopsis significantly reduced salt tolerance by modifying the ionic content and down-regulating expression of stress-responsive genes, including RD29A, COR47, KIN1, COR15A and RAB18. On the other hand, GsVAMP72 overexpression increased plant ABA sensitivity and altered the expression levels of ABA-responsive genes. Subcellular localization analysis showed that eGFP–GsVAMP72 fusion protein was observed on the plasma membrane-like and endosome-like structures but eGFP alone was distributing throughout the cytoplasm in Arabidopsis protoplasts and onion epidermal cells. GsVAMP72 promoter-controlled GUS activity was detected in both vegetative and reproductive organs, and was strongly induced by salt and ABA. In summary, we demonstrated that GsVAMP72 is a novel Glycine soja vesicle-associated membrane protein and is highly involved in regulating plant responses to salt and ABA stresses.


Physiologia Plantarum | 2016

Overexpression of GsGSTU13 and SCMRP in Medicago sativa confers increased salt-alkaline tolerance and methionine content.

Bowei Jia; Mingzhe Sun; Xiaoli Sun; Rongtian Li; Zhenyu Wang; Jing Wu; Zhengwei Wei; Huizi Duanmu; Jialei Xiao; Yanming Zhu

Tau-class glutathione S-transferases (GSTUs) are ubiquitous proteins encoded by a large gene family in plants, which play important roles in combating different environmental stresses. In previous studies, we constructed a Glycine soja transcriptional profile, and identified three GSTUs (GsGSTU13, GsGSTU14 and GsGSTU19) as potential salt-alkaline stress-responsive genes. Two of them, GsGSTU14 and GsGSTU19, have been shown to positively regulate plant salt-alkaline tolerance. In this study, we further demonstrated the positive function of GsGSTU13 in plant salt-alkaline stress responses by overexpressing it in Medicago sativa. Stress tolerance tests suggested that GsGSTU13 transgenic lines showed better growth and physiological indicators than wild alfalfa (cv. Zhaodong) under alkaline stress. Considering the shortage of methionine in alfalfa, we then co-transformed GsGSTU13 into two main alfalfa cultivars in Heilongjiang Province (cv. Zhaodong and cv. Nongjing No. 1) together with SCMRP, a synthesized gene that could improve the methionine content. We found that GsGSTU13/SCMRP transgenic alfalfa displayed not only higher methionine content but also higher tolerance to alkaline and salt stresses, respectively. Taken together, our results demonstrate that GsGSTU13 acts as a positive regulator in plant responses to salt and alkaline stresses, and can be used as a good candidate for generation of salt-alkaline tolerant crops.


Molecular Breeding | 2015

Overexpression of OsmiR156k leads to reduced tolerance to cold stress in rice (Oryza Sativa)

Na Cui; Xiaoli Sun; Mingzhe Sun; Bowei Jia; Huizi Duanmu; Dekang Lv; Xu Duan; Yanming Zhu

The microRNA156 (miR156) family ‘has’ been well demonstrated to regulate plant growth and development. However, no reports focused on the roles of miR156s in environmental stress responses. In previous studies, we identified 18 cold stress responsive microRNAs in rice by using microarray analysis. Here, in the present study, we focused on the biological function of one of these cold responsive microRNAs, OsmiR156k. We generated the transgenic rice overexpressing OsmiR156k under the control of CaMV35S promoter, and verified the presence of OsmiR156k by using Southern blot analysis. We found that overexpression of OsmiR156k inhibited the seedling growth at the very early seedling stage under cold stress. Furthermore, OsmiR156k overexpression decreased plant cold tolerance at the young seedling growth stage, as evidenced by lower survival rates, chlorophyll contents and proline contents. As expected, we also suggested the down-regulated expression of the cold stress responsive genes, 01g22249 and OsP5CS, and OsmiR156k-tagated SPL genes, SPL3, SPL14 and SPL17, in the OsmiR156k transgenic lines. Taken together, our findings suggest that overexpression of OsmiR156k decreased the tolerance to cold stress in rice.


PLOS ONE | 2014

Ectopic Expression of GsPPCK3 and SCMRP in Medicago sativa Enhances Plant Alkaline Stress Tolerance and Methionine Content

Mingzhe Sun; Xiaoli Sun; Yang Zhao; Chaoyue Zhao; Huizi Duanmu; Yang Yu; Wei Ji; Yanming Zhu

So far, it has been suggested that phosphoenolpyruvate carboxylases (PEPCs) and PEPC kinases (PPCKs) fulfill several important non-photosynthetic functions. However, the biological functions of soybean PPCKs, especially in alkali stress response, are not yet well known. In previous studies, we constructed a Glycine soja transcriptional profile, and identified three PPCK genes (GsPPCK1, GsPPCK2 and GsPPCK3) as potential alkali stress responsive genes. In this study, we confirmed the induced expression of GsPPCK3 under alkali stress and investigated its tissue expression specificity by using quantitative real-time PCR analysis. Then we ectopically expressed GsPPCK3 in Medicago sativa and found that GsPPCK3 overexpression improved plant alkali tolerance, as evidenced by lower levels of relative ion leakage and MDA content and higher levels of chlorophyll content and root activity. In this respect, we further co-transformed the GsPPCK3 and SCMRP genes into alfalfa, and demonstrated the increased alkali tolerance of GsPPCK3-SCMRP transgenic lines. Further investigation revealed that GsPPCK3-SCMRP co-overexpression promoted the PEPC activity, net photosynthetic rate and citric acid content of transgenic alfalfa under alkali stress. Moreover, we also observed the up-regulated expression of PEPC, CS (citrate synthase), H+-ATPase and NADP-ME genes in GsPPCK3-SCMRP transgenic alfalfa under alkali stress. As expected, we demonstrated that GsPPCK3-SCMRP transgenic lines displayed higher methionine content than wild type alfalfa. Taken together, results presented in this study supported the positive role of GsPPCK3 in plant response to alkali stress, and provided an effective way to simultaneously improve plant alkaline tolerance and methionine content, at least in legume crops.


Plant Molecular Biology | 2016

Functional characterization of a Glycine soja Ca 2+ ATPase in salt–alkaline stress responses

Mingzhe Sun; Bowei Jia; Na Cui; Yidong Wen; Huizi Duanmu; Qingyue Yu; Jialei Xiao; Xiaoli Sun; Yanming Zhu

It is widely accepted that Ca2+ATPase family proteins play important roles in plant environmental stress responses. However, up to now, most researches are limited in the reference plants Arabidopsis and rice. The function of Ca2+ATPases from non-reference plants was rarely reported, especially its regulatory role in carbonate alkaline stress responses. Hence, in this study, we identified the P-type II Ca2+ATPase family genes in soybean genome, determined their chromosomal location and gene architecture, and analyzed their amino acid sequence and evolutionary relationship. Based on above results, we pointed out the existence of gene duplication for soybean Ca2+ATPases. Then, we investigated the expression profiles of the ACA subfamily genes in wild soybean (Glycine soja) under carbonate alkaline stress, and functionally characterized one representative gene GsACA1 by using transgenic alfalfa. Our results suggested that GsACA1 overexpression in alfalfa obviously increased plant tolerance to both carbonate alkaline and neutral salt stresses, as evidenced by lower levels of membrane permeability and MDA content, but higher levels of SOD activity, proline concentration and chlorophyll content under stress conditions. Taken together, for the first time, we reported a P-type II Ca2+ATPase from wild soybean, GsACA1, which could positively regulate plant tolerance to both carbonate alkaline and neutral salt stresses.

Collaboration


Dive into the Mingzhe Sun's collaboration.

Top Co-Authors

Avatar

Xiaoli Sun

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yanming Zhu

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bowei Jia

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Huizi Duanmu

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chao Chen

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hua Cai

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qingyue Yu

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Ji

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Ding

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shanshan Yang

Northeast Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge