Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minmin Shi is active.

Publication


Featured researches published by Minmin Shi.


PLOS ONE | 2014

Rapamycin Ameliorates Inflammation and Fibrosis in the Early Phase of Cirrhotic Portal Hypertension in Rats through Inhibition of mTORC1 but Not mTORC2

Weijie Wang; Jiqi Yan; Huakai Wang; Minmin Shi; Mingjun Zhang; Weiping Yang; Chenghong Peng; Hongwei Li

Objective Hepatic stellate cells (HSCs) transdifferentiation and subsequent inflammation are important pathological processes involved in the formation of cirrhotic portal hypertension. This study characterizes the pathogenetic mechanisms leading to cholestatic liver fibrosis and portal hypertension, and focuses on mammalian target of rapamycin (mTOR) pathway as a potential modulator in the early phase of cirrhotic portal hypertension. Methods Early cirrhotic portal hypertension was induced by bile duct ligation (BDL) for three weeks. One week after operation, sham-operated (SHAM) and BDL rats received rapamycin (2 mg/kg/day) by intraperitoneal injection for fourteen days. Vehicle-treated SHAM and BDL rats served as controls. Fibrosis, inflammation, and portal pressure were evaluated by histology, morphometry, and hemodynamics. Expressions of pro-fibrogenic and pro-inflammatory genes in liver were measured by RT-PCR; alpha smooth muscle actin (α-SMA) and antigen Ki67 were detected by immunohistochemistry; expressions of AKT/mTOR signaling molecules, extracellular-signal-regulated kinase 1/2 (ERK1/2), p-ERK1/2, and interleukin-1 beta (IL-1β) were assessed by western blot. Results The AKT/mTOR signaling pathway was markedly activated in the early phase of cirrhotic portal hypertension induced by BDL in rats. mTOR blockade by rapamycin profoundly improved liver function by limiting inflammation, fibrosis and portal pressure. Rapamycin significantly inhibited the expressions of phosphorylated 70KD ribosomal protein S6 kinase (p-P70S6K) and phosphorylated ribosomal protein S6 (p-S6) but not p-AKT Ser473 relative to their total proteins in BDL-Ra rats. Those results suggested that mTOR Complex 1 (mTORC1) rather than mTORC2 was inhibited by rapamycin. Interestingly, we also found that the level of p-ERK1/2 to ERK1/2 was significantly increased in BDL rats, which was little affected by rapamycin. Conclusions The AKT/mTOR signaling pathway played an important role in the early phase of cirrhotic portal hypertension in rats, which could be a potential target for therapeutic intervention in the early phase of such pathophysiological progress.


PLOS ONE | 2014

Mesenchymal Stem Cells Promote Liver Regeneration and Prolong Survival in Small-For-Size Liver Grafts: Involvement of C-Jun N-Terminal Kinase, Cyclin D1, and NF-κB

Weijie Wang; Zhiyong Du; Jiqi Yan; Di Ma; Minmin Shi; Mingjun Zhang; Chenghong Peng; Hongwei Li

Background The therapeutic potential of mesenchymal stem cells (MSCs) has been highlighted recently for treatment of acute or chronic liver injury, by possibly differentiating into hepatocyte-like cells, reducing inflammation, and enhancing tissue repair. Despite recent progress, exact mechanisms of action are not clearly elucidated. In this study, we attempted to explore whether and how MSCs protected hepatocytes and stimulated allograft regeneration in small-for-size liver transplantation (SFSLT). Methods SFSLT model was established with a 30% partial liver transplantation (30PLT) in rats. The differentiation potential and characteristics of bone marrow derived MSCs were explored in vitro. MSCs were infused transvenously immediately after graft implantation in therapy group. Expressions of apoptosis-, inflammatory-, anti-inflammatory-, and growth factor-related genes were measured by RT-PCR, activities of transcription factors AP-1 and NF-κB were analyzed by EMSA, and proliferative responses of the hepatic graft were evaluated by immunohistochemistry and western blot. Results MSCs were successfully induced into hepatocyte-like cells, osteoblasts and adipocytes in vitro. MSCs therapy could not only alleviate ischemia reperfusion injury and acute inflammation to promote liver regeneration, but also profoundly improve one week survival rate. It markedly up-regulated the mRNA expressions of HGF, Bcl-2, Bcl-XL, IL-6, IL-10, IP-10, and CXCR2, however, down-regulated TNF-α. Increased activities of AP-1 and NF-κB, as well as elevated expressions of p-c-Jun, cyclin D1, and proliferating cell nuclear antigen (PCNA), were also found in MSCs therapy group. Conclusion These data suggest that MSCs therapy promotes hepatocyte proliferation and prolongs survival in SFSLT by reducing ischemia reperfusion injury and acute inflammation, and sustaining early increased expressions of c-Jun N-terminal Kinase, Cyclin D1, and NF-κB.


Molecular & Cellular Proteomics | 2014

Proteomic Analysis of Solid Pseudopapillary Tumor of the Pancreas Reveals Dysfunction of the Endoplasmic Reticulum Protein Processing Pathway

Yi Zhu; Hong Xu; Hao Chen; Junjie Xie; Minmin Shi; Baiyong Shen; Xiaxing Deng; Chao Liu; Xi Zhan; Chenghong Peng

Solid pseudopapillary tumor of the pancreas (SPTP) is a low-grade malignant tumor with a favorable prognosis after surgery. Many previous studies have focused on clinical features or pathological biomarkers of the disease, but a better understanding of the molecular mechanisms underlying SPTP may help guide future therapeutic strategies. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) technology integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify differentially expressed proteins in SPTP specimens. A total of 1171 proteins with a threshold of a 1.5-fold change and a p value ≤ 0.05 between SPTP tissue and matched normal pancreas tissue were identified for bioinformatics analysis. Mass spectrometry results were then further confirmed by assessing six representative proteins (ACADL, EPHX2, MSI2, DKK4, JUP, and DAD1) in individual specimens with immunohistochemistry. Upon mapping of the differentially expressed proteins to the Kyoto Encyclopedia of Genes and Genomes pathways database, we found several new cell-adhesion molecules that could be used as pathologic biomarkers. Furthermore, we observed that many endoplasmic reticulum-associated proteins were altered, suggesting that endoplasmic reticulum stress may play an important role in SPTP tumorigenesis. Seven proteins (ERO1LB, TRIM1, GRP94, BIP, SEC61B, P4HB, and PDIA4) in this pathway were further validated by immunohistochemistry, and six of them (except SEC61B) coincided to the LC-MS/MS results. This first comprehensive analysis of the SPTP proteome confirms proteins that have been implicated in earlier reports and reveals novel candidates and pathways that could be investigated further for clinical applications.


Toxicology Letters | 2013

Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer.

Guo-Qing Bao; Baiyong Shen; Chun-Peng Pan; Ya-Jing Zhang; Minmin Shi; Chenghong Peng

Gemcitabine is a first-line drug utilised in the chemotherapy of pancreatic cancer; however, this drug induces chemo-resistance and toxicity to normal tissue during treatment. Here, we firstly report that andrographolide (ANDRO) alone not only has anti-pancreatic cancer activity, but it also potentiates the anti-tumour activity of gemcitabine. Treatment with ANDRO alone inhibits proliferation of the pancreatic cancer cell lines in a dose- and time-dependent manner in vitro. Interestingly, ANDRO induces cell cycle arrest and apoptosis of pancreatic cancer cells by inhibiting STAT3 and Akt activation, upregulating the expression of p21(WAF1) and Bax, and downregulating the expression of cyclinD1, cyclinE, survivin, X-IAP and Bcl-2. Additionally, ANDRO combined with gemcitabine significantly induce stronger cell cycle arrest and more obvious apoptosis than each single treatment. The mechanistic study demonstrates that this synergistic effect is also dependent on the inhibition of STAT3 and Akt activations which subsequently regulates the pathways involved in the apoptosis and cell cycle arrest. Furthermore, both ANDRO alone and the combination treatments exhibit efficacious anti-tumour activity in vivo. Overall, our results provide solid evidence supporting that ANDRO alone or its combination with gemcitabine is a potential chemotherapeutic approach for treating human pancreatic cancer in clinical practice.


Oncotarget | 2016

mir-329 restricts tumor growth by targeting grb2 in pancreatic cancer

Xinjing Wang; Xiongxiong Lu; Tian Zhang; Chenlei Wen; Minmin Shi; Xiaomei Tang; Hao Chen; Chenghong Peng; Hongwei Li; Yuan Fang; Xiaxing Deng; Baiyong Shen

Pancreatic cancer is one of the most lethal malignancies worldwide. To illustrate the pathogenic mechanism(s), we looked into the expression and function of miR-329 associated with pancreatic cancer development. It was found that miR-329 expression was downregulated in the pancreatic cancer patients who demonstrated significantly shorter overall survival than the patients having upregulated expression. Also, more advanced pT stage cases were observed in the low miR-329 expression group of patients. Interestingly, our studies uncovered that miR-329 overexpression inhibited proliferation and induced apoptosis of pancreatic cancer cells, in contrast the miR-329 inhibitor reversed this phenomenon dramatically. Additionally, overexpression of miR-329 significantly limited tumor growth in the xenograft model. In the mechanistic study, we identified GRB2 as a direct target of miR-329 in pancreatic cancer cells, and expression of GRB2 was inversely correlated with miR-329 expression in pancreatic cancer patients. Furthermore, GRB2 overexpression in cell line and xenograft model dramatically diminished miR-329 mediated anti-proliferation and apoptosis induction, indicating that GRB2/pERK pathway was mainly downregulated by miR-329 expression. In general, our study has shed light on miR-329 regulated mechanism and, miR-329/GRB2/pERK is potential to be targeted for pancreatic cancer management.


Cancer Letters | 2016

GFRα2 prompts cell growth and chemoresistance through down-regulating tumor suppressor gene PTEN via Mir-17-5p in pancreatic cancer

Jiangning Gu; Di Wang; Jiaqiang Zhang; Yi Zhu; Ying Li; Hao Chen; Minmin Shi; Xuelong Wang; Baiyong Shen; Xiaxing Deng; Qian Zhan; Gang Wei; Chenghong Peng

Nerve growth factors and their receptors have received an increasing attention in certain cancers since they play an important role in regulating tumorigenesis, biological process and metastasis. Here we aimed at characterizing a new function of one of the subtypes of growth factor receptors (GFR), GFRα2, in pancreatic cancer. In this study, we showed that GFRα2 was up-regulated in pancreatic adenocarcinoma and was positively correlated with tumor size and perineural invasion, which indicated that it may be associated with cell growth and apoptosis. Mechanically, we discovered that high GFRα2 expression level leads to PTEN inactivation via enhancing Mir-17-5p level.


Cancer Letters | 2017

Melittin inhibits tumor growth and decreases resistance to gemcitabine by downregulating cholesterol pathway gene CLU in pancreatic ductal adenocarcinoma

Xinjing Wang; Jing Xie; Xiongxiong Lu; Chenlei Wen; Zhen Huo; Junjie Xie; Minmin Shi; Xiaomei Tang; Hao Chen; Chenghong Peng; Yuan Fang; Xiaxing Deng; Baiyong Shen

Melittin is a Chinese traditional medicine for treating chronic inflammation, immunological diseases and cancers, however, the efficacy of melittin and its mechanism for treating pancreatic ductal adenocarcinoma (PDAC) are still unknown. Here we investigated the anti-cancer activity of melittin and its regulated mechanism(s) in the PDAC models. Melittin was found to suppress tumor growth by promoting cell apoptosis and cell-cycle arrest. Interestingly, the microarray analyses demonstrated that melittin significantly regulated cholesterol biosynthesis pathway during treatment. For instance, the cholesterol pathway gene clusterin (CLU) was highly downregulated by melittin which also enhanced gemcitabine sensitivity in PDAC cells by inhibiting CLU expression. In contrast, overexpression of CLU significantly diminished melittin mediated tumor suppression and gemcitabine sensitization, suggesting that CLU is the target of melittin. Furthermore, in the xenograft mouse model, the combination therapy of melittin and gemcitabine is more efficacious for inhibiting PDAC tumor growth than either single regimen. Taken together, our study has indicated that melittin is capable of suppressing tumor growth and promoting gemcitabine sensitivity in PDAC by downregulating cholesterol pathway.


Hepatology Research | 2013

Suppression of liver regeneration affects hepatic graft survival in small-for-size liver transplantation in rats.

Wen-Yi Fu; Jiqi Yan; Minmin Shi; Di Ma; Chenghong Peng; Hongwei Li

Aim:  Small‐for‐size liver transplantation (SFSLT) often results in hepatic graft failure and decreased survival. The present study was aimed to investigate the possible mechanism of hepatic graft failure in SFSLT in rats.


World Journal of Gastroenterology | 2012

Microencapsulated tumor assay: Evaluation of the nude mouse model of pancreatic cancer

Mingzhe Ma; Dongfeng Cheng; Jinhua Ye; Yong Zhou; Jiaxiang Wang; Minmin Shi; Baosan Han; Cheng Hong Peng

AIM To establish a more stable and accurate nude mouse model of pancreatic cancer using cancer cell microencapsulation. METHODS The assay is based on microencapsulation technology, wherein human tumor cells are encapsulated in small microcapsules (approximately 420 μm in diameter) constructed of semipermeable membranes. We implemented two kinds of subcutaneous implantation models in nude mice using the injection of single tumor cells and encapsulated pancreatic tumor cells. The size of subcutaneously implanted tumors was observed on a weekly basis using two methods, and growth curves were generated from these data. The growth and metastasis of orthotopically injected single tumor cells and encapsulated pancreatic tumor cells were evaluated at four and eight weeks postimplantation by positron emission tomography-computed tomography scan and necropsy. The pancreatic tumor samples obtained from each method were then sent for pathological examination. We evaluated differences in the rates of tumor incidence and the presence of metastasis and variations in tumor volume and tumor weight in the cancer microcapsules vs single-cell suspensions. RESULTS Sequential in vitro observations of the microcapsules showed that the cancer cells in microcapsules proliferated well and formed spheroids at days 4 to 6. Further in vitro culture resulted in bursting of the membrane of the microcapsules and cells deviated outward and continued to grow in flasks. The optimum injection time was found to be 5 d after tumor encapsulation. In the subcutaneous implantation model, there were no significant differences in terms of tumor volume between the encapsulated pancreatic tumor cells and cells alone and rate of tumor incidence. There was a significant difference in the rate of successful implantation between the cancer cell microencapsulation group and the single tumor-cell suspension group (100% vs 71.43%, respectively, P = 0.0489) in the orthotropic implantation model. The former method displayed an obvious advantage in tumor mass (4th wk: 0.0461 ± 0.0399 vs 0.0313 ± 0.021, t = -0.81, P = 0.4379; 8th wk: 0.1284 ± 0.0284 vs 0.0943 ± 0.0571, t = -2.28, respectively, P = 0.0457) compared with the latter in the orthotopic implantation model. CONCLUSION Encapsulation of pancreatic tumor cells is a reliable method for establishing a pancreatic tumor animal model.


Scientific Reports | 2017

Up-regulation of chemokine receptor CCR4 is associated with Human Hepatocellular Carcinoma malignant behavior

Xi Cheng; Huo Wu; Zhijian Jin; Ding Ma; Stanley Yuen; Xiaoqian Jing; Minmin Shi; Baiyong Shen; Chenghong Peng; Ren Zhao; Weihua Qiu

Studies indicate that the chemokine receptor is responsible for poor prognosis of hepatocellular carcinoma (HCC) patients. In this study, we initially demonstrated that CCR4 is overexpressed in HCC specimens, and its elevation in HCC tissues positively correlates with tumor capsule breakthrough and vascular invasion. Although overexpression of CCR4 failed to influent proliferation of HCC cells in vitro apparently, the prominent acceleration on HCC tumor growth in vivo was remarkable. The underlying mechanism may be involved in neovascularization. Interestingly, different from effect on proliferation, CCR4 overexpression could trigger HCC metastasis both in vitro and in vivo also induced HCC cell epithelial-mesenchymal transition (EMT) as well. Then we identified matrix metalloproteinase 2 (MMP2) as a direct target of CCR4 which plays an important role in CCR4-mediated HCC cell invasion, which was up-regulated by ERK/AKT signaling. Positive correlation between CCR4 and MMP2 expression was also observed in HCC tissues. In conclusion, our study suggested that chemokine receptor CCR4 promotes HCC malignancy and facilitated HCC cell metastases via ERK/AKT/MMP2 pathway. These findings suggest that CCR4 may be a potential new diagnostic and prognostic marker in HCC, and targeting CCR4 may be a potential therapeutic option for blocking HCC metastasis.

Collaboration


Dive into the Minmin Shi's collaboration.

Top Co-Authors

Avatar

Baiyong Shen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Chenghong Peng

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Hao Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Hongwei Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xiaxing Deng

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Chenlei Wen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xiaomei Tang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jiqi Yan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yuan Fang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Junjie Xie

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge