Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minoru Nagano is active.

Publication


Featured researches published by Minoru Nagano.


Plant Physiology | 2006

Cell Death Suppressor Arabidopsis Bax Inhibitor-1 Is Associated with Calmodulin Binding and Ion Homeostasis

Yuri Ihara-Ohori; Minoru Nagano; Shoshi Muto; Hirofumi Uchimiya; Maki Kawai-Yamada

Cell death suppressor Bax inhibitor-1 (BI-1), an endoplasmic reticulum membrane protein, exists in a wide range of organisms. The split-ubiquitin system, overlay assay, and bimolecular fluorescence complementation analysis demonstrated that Arabidopsis (Arabidopsis thaliana) BI-1 (AtBI-1) interacted with calmodulin in yeast (Saccharomyces cerevisiae) and in plant cells. Furthermore, AtBI-1 failed to rescue yeast mutants lacking Ca2+ ATPase (Pmr1 or Spf1) from Bax-induced cell death. Pmr1 and Spf1, p-type ATPases localized at the inner membrane, are believed to be involved in transmembrane movement of calcium ions in yeast. Thus, the presence of intact Ca2+ ATPases was essential for AtBI-1-mediated cell death suppression in yeast. To investigate the effect of AtBI-1 on calcium homeostasis, we evaluated sensitivity against cyclopiazonic acid (CPA), an inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase in AtBI-1-overexpressing or knock-down transgenic Arabidopsis plants. These plants demonstrated altered CPA or ion stress sensitivity. Furthermore, AtBI-1-overexpressing cells demonstrated an attenuated rise in cytosolic calcium following CPA or H2O2 treatment, suggesting that AtBI-1 affects ion homeostasis in plant cell death regulation.


Plant Physiology | 2012

Arabidopsis Sphingolipid Fatty Acid 2-Hydroxylases (AtFAH1 and AtFAH2) Are Functionally Differentiated in Fatty Acid 2-Hydroxylation and Stress Responses

Minoru Nagano; Kentaro Takahara; Masaru Fujimoto; Nobuhiro Tsutsumi; Hirofumi Uchimiya; Maki Kawai-Yamada

2-Hydroxy fatty acids (2-HFAs) are predominantly present in sphingolipids and have important physicochemical and physiological functions in eukaryotic cells. Recent studies from our group demonstrated that sphingolipid fatty acid 2-hydroxylase (FAH) is required for the function of Arabidopsis (Arabidopsis thaliana) Bax inhibitor-1 (AtBI-1), which is an endoplasmic reticulum membrane-localized cell death suppressor. However, little is known about the function of two Arabidopsis FAH homologs (AtFAH1 and AtFAH2), and it remains unclear whether 2-HFAs participate in cell death regulation. In this study, we found that both AtFAH1 and AtFAH2 had FAH activity, and the interaction with Arabidopsis cytochrome b5 was needed for the sufficient activity. 2-HFA analysis of AtFAH1 knockdown lines and atfah2 mutant showed that AtFAH1 mainly 2-hydroxylated very-long-chain fatty acid (VLCFA), whereas AtFAH2 selectively 2-hydroxylated palmitic acid in Arabidopsis. In addition, 2-HFAs were related to resistance to oxidative stress, and AtFAH1 or 2-hydroxy VLCFA showed particularly strong responses to oxidative stress. Furthermore, AtFAH1 interacted with AtBI-1 via cytochrome b5 more preferentially than AtFAH2. Our results suggest that AtFAH1 and AtFAH2 are functionally different FAHs, and that AtFAH1 or 2-hydroxy VLCFA is a key factor in AtBI-1-mediated cell death suppression.


PLOS Pathogens | 2015

The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice.

Jinling Liu; Chan Ho Park; Feng He; Minoru Nagano; Mo Wang; Maria Bellizzi; Kai Zhang; Xiaoshan Zeng; Wende Liu; Yuese Ning; Yoji Kawano; Guo-Liang Wang

The ubiquitin proteasome system in plants plays important roles in plant-microbe interactions and in immune responses to pathogens. We previously demonstrated that the rice U-box E3 ligase SPL11 and its Arabidopsis ortholog PUB13 negatively regulate programmed cell death (PCD) and defense response. However, the components involved in the SPL11/PUB13-mediated PCD and immune signaling pathway remain unknown. In this study, we report that SPL11-interacting Protein 6 (SPIN6) is a Rho GTPase-activating protein (RhoGAP) that interacts with SPL11 in vitro and in vivo. SPL11 ubiquitinates SPIN6 in vitro and degrades SPIN6 in vivo via the 26S proteasome-dependent pathway. Both RNAi silencing in transgenic rice and knockout of Spin6 in a T-DNA insertion mutant lead to PCD and increased resistance to the rice blast pathogen Magnaporthe oryzae and the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. The levels of reactive oxygen species and defense-related gene expression are significantly elevated in both the Spin6 RNAi and mutant plants. Strikingly, SPIN6 interacts with the small GTPase OsRac1, catalyze the GTP-bound OsRac1 into the GDP-bound state in vitro and has GAP activity towards OsRac1 in rice cells. Together, our results demonstrate that the RhoGAP SPIN6 acts as a linkage between a U-box E3 ligase-mediated ubiquitination pathway and a small GTPase-associated defensome system for plant immunity.


Planta | 2014

Arabidopsis Bax inhibitor-1 promotes sphingolipid synthesis during cold stress by interacting with ceramide-modifying enzymes

Minoru Nagano; Toshiki Ishikawa; Yoshie Ogawa; Mitsuru Iwabuchi; Akari Nakasone; Ko Shimamoto; Hirofumi Uchimiya; Maki Kawai-Yamada

Bax inhibitor-1 (BI-1) is a widely conserved cell death suppressor localized in the endoplasmic reticulum membrane. Our previous results revealed that Arabidopsis BI-1 (AtBI-1) interacts with not only Arabidopsis cytochrome b5 (Cb5), an electron transfer protein, but also a Cb5-like domain (Cb5LD)-containing protein, Saccharomyces cerevisiae fatty acid 2-hydroxylase 1, which 2-hydroxylates sphingolipid fatty acids. We have now found that AtBI-1 binds Arabidopsis sphingolipid Δ8 long-chain base (LCB) desaturases AtSLD1 and AtSLD2, which are Cb5LD-containing proteins. The expression of both AtBI-1 and AtSLD1 was increased by cold exposure. However, different phenotypes were observed in response to cold treatment between an atbi-1 mutant and a sld1sld2 double mutant. To elucidate the reasons behind the difference, we analyzed sphingolipids and found that unsaturated LCBs in atbi-1 were not altered compared to wild type, whereas almost all LCBs in sld1sld2 were saturated, suggesting that AtBI-1 may not be necessary for the desaturation of LCBs. On the other hand, the sphingolipid content in wild type increased in response to low temperature, whereas total sphingolipid levels in atbi-1 were unaltered. In addition, the ceramide-modifying enzymes AtFAH1, sphingolipid base hydroxylase 2 (AtSBH2), acyl lipid desaturase 2 (AtADS2) and AtSLD1 were highly expressed under cold stress, and all are likely to be related to AtBI-1 function. These findings suggest that AtBI-1 contributes to synthesis of sphingolipids during cold stress by interacting with AtSLD1, AtFAH1, AtSBH2 and AtADS2.


Plant Physiology | 2015

Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots

Takaki Yamauchi; Katsuhiro Shiono; Minoru Nagano; Aya Fukazawa; Miho Ando; Itsuro Takamure; Hitoshi Mori; Naoko K. Nishizawa; Maki Kawai-Yamada; Nobuhiro Tsutsumi; Kiyoaki Kato; Mikio Nakazono

Long-chain fatty acids enhance the expression of an ethylene biosynthesis gene, production of ethylene, and promote ethylene-induced aerenchyma formation. In rice (Oryza sativa) roots, lysigenous aerenchyma, which is created by programmed cell death and lysis of cortical cells, is constitutively formed under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. Ethylene is involved in the induction of aerenchyma formation. reduced culm number1 (rcn1) is a rice mutant in which the gene encoding the ATP-binding cassette transporter RCN1/OsABCG5 is defective. Here, we report that the induction of aerenchyma formation was reduced in roots of rcn1 grown in stagnant deoxygenated nutrient solution (i.e. under stagnant conditions, which mimic oxygen-deficient conditions in waterlogged soils). 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a key enzyme in ethylene biosynthesis. Stagnant conditions hardly induced the expression of ACS1 in rcn1 roots, resulting in low ethylene production in the roots. Accumulation of saturated very-long-chain fatty acids (VLCFAs) of 24, 26, and 28 carbons was reduced in rcn1 roots. Exogenously supplied VLCFA (26 carbons) increased the expression level of ACS1 and induced aerenchyma formation in rcn1 roots. Moreover, in rice lines in which the gene encoding a fatty acid elongase, CUT1-LIKE (CUT1L; a homolog of the gene encoding Arabidopsis CUT1, which is required for cuticular wax production), was silenced, both ACS1 expression and aerenchyma formation were reduced. Interestingly, the expression of ACS1, CUT1L, and RCN1/OsABCG5 was induced predominantly in the outer part of roots under stagnant conditions. These results suggest that, in rice under oxygen-deficient conditions, VLCFAs increase ethylene production by promoting 1-aminocyclopropane-1-carboxylic acid biosynthesis in the outer part of roots, which, in turn, induces aerenchyma formation in the root cortex.


Journal of Biological Chemistry | 2014

The Crystal Structure of the Plant Small GTPase OsRac1 Reveals Its Mode of Binding to NADPH Oxidase

Ken Ichi Kosami; Izuru Ohki; Minoru Nagano; Kyoko Furuita; Toshihiko Sugiki; Yoji Kawano; Tsutomu Kawasaki; Toshimichi Fujiwara; Atsushi Nakagawa; Ko Shimamoto; Chojiro Kojima

Background: The plant small GTPase OsRac1 plays an important role in rice innate immunity. Results: The crystal structure and NADPH oxidase-binding mode of active-form OsRac1 were determined. Conclusion: The structure explains the mechanism by which OsRac1 regulates reactive oxygen species production and activates the immune response. Significance: A new insight into the activation of plant immunity by small GTPase is revealed. Rac/Rop proteins are Rho-type small GTPases that act as molecular switches in plants. Recent studies have identified these proteins as key components in many major plant signaling pathways, such as innate immunity, pollen tube growth, and root hair formation. In rice, the Rac/Rop protein OsRac1 plays an important role in regulating the production of reactive oxygen species (ROS) by the NADPH oxidase OsRbohB during innate immunity. However, the molecular mechanism by which OsRac1 regulates OsRbohB remains unknown. Here, we report the crystal structure of OsRac1 complexed with the non-hydrolyzable GTP analog guanosine 5′-(β,γ-imido)triphosphate at 1.9 Å resolution; this represents the first active-form structure of a plant small GTPase. To elucidate the ROS production in rice cells, structural information was used to design OsRac1 mutants that displayed reduced binding to OsRbohB. Only mutations in the OsRac1 Switch I region showed attenuated interactions with OsRbohB in vitro. In particular, Tyr39 and Asp45 substitutions suppressed ROS production in rice cells, indicating that these residues are critical for interaction with and activation of OsRbohB. Structural comparison of active-form OsRac1 with AtRop9 in its GDP-bound inactive form showed a large conformational difference in the vicinity of these residues. Our results provide new insights into the molecular mechanism of the immune response through OsRac1 and the various cellular responses associated with plant Rac/Rop proteins.


FEBS Journal | 2013

Identification of a sphingolipid-specific phospholipase D activity associated with the generation of phytoceramide-1-phosphate in cabbage leaves.

Tamotsu Tanaka; Takashi Kida; Hiroyuki Imai; Jun-ichi Morishige; Ryouhei Yamashita; Hisatsugu Matsuoka; Sachika Uozumi; Kiyoshi Satouchi; Minoru Nagano; Akira Tokumura

The structure and biosynthetic route for an unidentified lipid (lipid X) detected by TLC of cabbage (Brassica oleracea) lipids was determined. Lipid X is a phospholipid that is resistant to mild alkali and detectable by MALDI‐TOF MS as an adduct with Phos‐tag, a phosphate‐capture zinc complex. Various α‐hydroxy fatty acids (16:0, 22:0, 24:0 and 24:1) were detected by GC‐MS of fatty acid methyl esters prepared from lipid X. The deacyl derivative of lipid X was determined to be 4‐hydroxysphingenine (dehydrophytosphingosine)‐1‐phosphate by MALDI‐TOF MS with Phos‐tag. From these results, lipid X was determined to be phytoceramide‐1‐phosphate (PC1P) with an α‐hydroxy fatty acid. When cabbage homogenates were incubated, PC1P was formed, with a concomitant decrease in the amount of glycosylinositol phosphoceramide (GIPC). The formation of PC1P from GIPC was confirmed by treatment of purified cabbage GIPC with a membrane fraction of cabbage homogenates. Using a partially purified enzyme fraction, we found that the enzyme hydrolyzes GIPC specifically, but not glycerophospholipids and sphingomyelin. Arabidopsis thaliana also had this enzyme activity. From these results, we conclude that a previously uncharacterized phospholipase D activity that specifically hydrolyzes GIPC produces PC1P in brassicaceous plants.


Plant Signaling & Behavior | 2012

Plant sphingolipid fatty acid 2-hydroxylases have unique characters unlike their animal and fungus counterparts

Minoru Nagano; Hirofumi Uchimiya; Maki Kawai-Yamada

2-Hydroxy fatty acids mainly contained in sphingolipids are synthesized by a sphingolipid fatty acid 2-hydroxylase (FAH). Recently, two FAH homologs in Arabidopsis thaliana (AtFAH1 and AtFAH2), without any cytochrome b5(Cb5)-like domains, which are essential for the function of Saccharomyces cerevisiae and mammalian FAH, were identified and both AtFAHs were shown to be activated by the interaction with Cb5. In this study, we compared FAHs of various plants, animals and fungi. Interestingly, only plants had two FAH homologs and none of plant FAHs had any Cb5-like domains. In addition, we showed from the interaction and expression analyses that AtFAHs interacted with multiple Cb5s probably in various tissues. Thus, plant FAHs may have evolved unlike animal and fungus FAHs.


Bioscience, Biotechnology, and Biochemistry | 2011

Characterization of Glucosylceramides in the Polygonaceae, Rumex obtusifolius L. Injurious Weed

Masayuki Watanabe; Atsuko Miyagi; Minoru Nagano; Maki Kawai-Yamada; Hiroyuki Imai

Rumex obtusifolius L., a member of Polygonaceae, is one of the world’s worst weeds. We characterized the glucosylceramide molecular species in leaves of R. obtusifolius by liquid chromatography/tandem mass spectrometry. 4,8-Sphingadienines were principally paired with 2-hydroxy palmitic acids. In contrast, 4-hydroxy-8-sphingenines were chiefly attached to 2-hydroxy fatty acids with 22 to 26 carbon-chain length. A unique characteristic of the 2-hydroxy fatty acid composition of R. obtusifolius was the high content of n-9 monoenoic 2-hydroxy fatty acids with 22 and 24 carbon-chain length. The levels of the Z and E stereoisomers of the 8-unsaturated long-chain bases were reliably distinguished from those in other plant families in ten species of Polygonaceae.


Planta | 2014

Plastidic protein Cdf1 is essential in Arabidopsis embryogenesis

Maki Kawai-Yamada; Minoru Nagano; Masayuki Kakimoto; Hirofumi Uchimiya

Arabidopsis cell growth defect factor-1 (Cdf1 in yeast, At5g23040) was originally isolated as a cell growth suppressor of yeast from genetic screening. To investigate the in vivo role of Cdf1 in plants, a T-DNA insertion line was analyzed. A homozygous T-DNA insertion mutant (cdf1/cdf1) was embryo lethal and showed arrested embryogenesis at the globular stage. The Cdf1 protein, when fused with green fluorescent protein, was localized to the plastid in stomatal guard cells and mesophyll cells. A promoter-β-glucuronidase assay found expression of Cdf1 in the early heart stage of embryogenesis, suggesting that Cdf1 was essential for Arabidopsis embryogenesis during the transition of the embryo from the globular to heart stage.

Collaboration


Dive into the Minoru Nagano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ko Shimamoto

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoji Kawano

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge