Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minoska Valli is active.

Publication


Featured researches published by Minoska Valli.


Applied and Environmental Microbiology | 2006

Improvement of Lactic Acid Production in Saccharomyces cerevisiae by Cell Sorting for High Intracellular pH

Minoska Valli; Michael Sauer; Paola Branduardi; Nicole Borth; Danilo Porro; Diethard Mattanovich

ABSTRACT Yeast strains expressing heterologous l-lactate dehydrogenases can produce lactic acid. Although these microorganisms are tolerant of acidic environments, it is known that at low pH, lactic acid exerts a high level of stress on the cells. In the present study we analyzed intracellular pH (pHi) and viability by staining with cSNARF-4F and ethidium bromide, respectively, of two lactic-acid-producing strains of Saccharomyces cerevisiae, CEN.PK m850 and CEN.PK RWB876. The results showed that the strain producing more lactic acid, CEN.PK m850, has a higher pHi. During batch culture, we observed in both strains a reduction of the mean pHi and the appearance of a subpopulation of cells with low pHi. Simultaneous analysis of pHi and viability proved that the cells with low pHi were dead. Based on the observation that the better lactic-acid-producing strain had a higher pHi and that the cells with low pHi were dead, we hypothesized that we might find better lactic acid producers by screening for cells within the highest pHi range. The screening was performed on UV-mutagenized populations through three consecutive rounds of cell sorting in which only the viable cells within the highest pHi range were selected. The results showed that lactic acid production was significantly improved in the majority of the mutants obtained compared to the parental strains. The best lactic-acid-producing strain was identified within the screening of CEN.PK m850 mutants.


Applied and Environmental Microbiology | 2005

Intracellular pH Distribution in Saccharomyces cerevisiae Cell Populations, Analyzed by Flow Cytometry

Minoska Valli; Michael Sauer; Paola Branduardi; Nicole Borth; Danilo Porro; Diethard Mattanovich

ABSTRACT Intracellular pH has an important role in the maintenance of the normal functions of yeast cells. The ability of the cell to maintain this pH homeostasis also in response to environmental changes has gained more and more interest in both basic and applied research. In this study we describe a protocol which allows the rapid determination of the intracellular pH of Saccharomyces cerevisiae cells. The method is based on flow cytometry and employs the pH-dependent fluorescent probe carboxy SNARF-4F. The protocol attempts to minimize the perturbation of the system under study, thus leading to accurate information about the physiological state of the single cell. Moreover, statistical analysis performed on major factors that may influence the final determination supported the validity of the optimized protocol. The protocol was used to investigate the effect of external pH on S. cerevisiae cells incubated in buffer. The results obtained showed that stationary cells are better able than exponentially grown cells to maintain their intracellular pH homeostasis independently of external pH changes. Furthermore, analysis of the intracellular pH distribution within the cell populations highlighted the presence of subpopulations characterized by different intracellular pH values. Notably, a different behavior was observed for exponentially grown and stationary cells in terms of the appearance and development of these subpopulations as a response to a changing external pH.


Fems Microbiology Reviews | 2013

The secretory pathway: exploring yeast diversity

Marizela Delic; Minoska Valli; Alexandra B. Graf; Martin Pfeffer; Diethard Mattanovich; Brigitte Gasser

Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes.


Microbial Cell Factories | 2006

Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export

Paola Branduardi; Michael Sauer; Luca De Gioia; Giuseppe Zampella; Minoska Valli; Diethard Mattanovich; Danilo Porro

BackgroundMetabolic pathway manipulation for improving the properties and the productivity of microorganisms is becoming a well established concept. For the production of important metabolites, but also for a better understanding of the fundamentals of cell biology, detailed studies are required. In this work we analysed the lactate production from metabolic engineered Saccharomyces cerevisiae cells expressing a heterologous lactate dehydrogenase (LDH) gene. The LDH gene expression in a budding yeast cell introduces a novel and alternative pathway for the NAD+ regeneration, allowing a direct reduction of the intracellular pyruvate to lactate, leading to a simultaneous accumulation of lactate and ethanol.ResultsFour different S. cerevisiae strains were transformed with six different wild type and one mutagenised LDH genes, in combination or not with the over-expression of a lactate transporter. The resulting yield values (grams of lactate produced per grams of glucose consumed) varied from as low as 0,0008 to as high as 0.52 g g-1. In this respect, and to the best of our knowledge, higher redirections of the glycolysis flux have never been obtained before without any disruption and/or limitation of the competing biochemical pathways.ConclusionIn the present work it is shown that the redirection of the pathway towards the lactate production can be strongly modulated by the genetic background of the host cell, by the source of the heterologous Ldh enzyme, by improving its biochemical properties as well as by modulating the export of lactate in the culture media.


Microbial Cell Factories | 2004

Differential gene expression in recombinant Pichia pastoris analysed by heterologous DNA microarray hybridisation

Michael Sauer; Paola Branduardi; Brigitte Gasser; Minoska Valli; Michael Maurer; Danilo Porro; Diethard Mattanovich

BackgroundPichia pastoris is a well established yeast host for heterologous protein expression, however, the physiological and genetic information about this yeast remains scanty. The lack of a published genome sequence renders DNA arrays unavailable, thereby hampering more global investigations of P. pastoris from the beginning. Here, we examine the suitability of Saccharomyces cerevisiae DNA microarrays for heterologous hybridisation with P. pastoris cDNA.ResultsWe could show that it is possible to obtain new and valuable information about transcriptomic regulation in P. pastoris by probing S. cerevisiae DNA microarrays. The number of positive signals was about 66 % as compared to homologous S. cerevisiae hybridisation, and both the signal intensities and gene regulations correlated with high significance between data obtained from P. pastoris and S. cerevisiae samples. The differential gene expression patterns upon shift from glycerol to methanol as carbon source were investigated in more detail. Downregulation of TCA cycle genes and a decrease of genes related to ribonucleotide and ribosome synthesis were among the major effects identified.ConclusionsWe could successfully demonstrate that heterologous microarray hybridisations allow deep insights into the transcriptomic regulation processes of P. pastoris. The observed downregulation of TCA cycle and ribosomal synthesis genes correlates to a significantly lower specific growth rate during the methanol feed phase.


Applied and Environmental Microbiology | 2004

Production of l-Ascorbic Acid by Metabolically Engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii

Michael Sauer; Paola Branduardi; Minoska Valli; Danilo Porro

ABSTRACT Yeasts do not possess an endogenous biochemical pathway for the synthesis of vitamin C. However, incubated with l-galactose, l-galactono-1,4-lactone, or l-gulono-1,4-lactone intermediates from the plant or animal pathway leading to l-ascorbic acid, Saccharomyces cerevisiae and Zygosaccharomyces bailii cells accumulate the vitamin intracellularly. Overexpression of the S. cerevisiae enzymes d-arabinose dehydrogenase and d-arabinono-1,4-lactone oxidase enhances this ability significantly. In fact, the respective recombinant yeast strains even gain the capability to accumulate the vitamin in the culture medium. An even better result is obtainable by expression of the plant enzyme l-galactose dehydrogenase from Arabidopsis thaliana. Budding yeast cells overexpressing the endogenous d-arabinono-1,4-lactone oxidase as well as l-galactose dehydrogenase are capable of producing about 100 mg of l-ascorbic acid liter−1, converting 40% (wt/vol) of the starting compound l-galactose.


Biotechnology Journal | 2014

In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response

Corinna Rebnegger; Alexandra B. Graf; Minoska Valli; Matthias G. Steiger; Brigitte Gasser; Michael Maurer; Diethard Mattanovich

Protein production in yeasts is related to the specific growth rate μ. To elucidate on this correlation, we studied the transcriptome of Pichia pastoris at different specific growth rates by cultivating a strain secreting human serum albumin at μ = 0.015 to 0.15 h–1 in glucose-limited chemostats. Genome-wide regulation revealed that translation-related as well as mitochondrial genes were upregulated with increasing μ, while autophagy and other proteolytic processes, carbon source-responsive genes and other targets of the TOR pathway as well as many transcriptional regulators were downregulated at higher μ. Mating and sporulation genes were most active at intermediate μ of 0.05 and 0.075 h–1. At very slow growth (μ = 0.015 h–1) gene regulation differs significantly, affecting many transporters and glucose sensing. Analysis of a subset of genes related to protein folding and secretion reveals that unfolded protein response targets such as translocation, endoplasmic reticulum genes, and cytosolic chaperones are upregulated with increasing growth rate while proteolytic degradation of secretory proteins is downregulated. We conclude that a high μ positively affects specific protein secretion rates by acting on multiple cellular processes.


Fems Yeast Research | 2004

The yeast Zygosaccharomyces bailii: a new host for heterologous protein production, secretion and for metabolic engineering applications

Paola Branduardi; Minoska Valli; Luca Brambilla; Michael Sauer; Lilia Alberghina; Danilo Porro

Molecular tools for the production of heterologous proteins and metabolic engineering applications of the non-conventional yeast Zygosaccharomyces bailii were developed. The combination of Z. bailiis resistance to relatively high temperature, osmotic pressure and low pH values, with a high specific growth rate renders this yeast potentially interesting for exploitation for biotechnological purposes as well as for the understanding of the biological phenomena and mechanisms underlying the respective resistances. Looking forward to these potential applications, here we present the tools required for the production and the secretion of different heterologous proteins, and one example of a metabolic engineering application of this non-conventional yeast, employing the newly developed molecular tools.


BMC Genomics | 2015

Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level

Roland Prielhofer; Stephanie P. Cartwright; Alexandra B. Graf; Minoska Valli; Roslyn M. Bill; Diethard Mattanovich; Brigitte Gasser

BackgroundThe methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the presence of glucose, but also by glycerol. This unusual regulatory behavior prompted us to study the regulation of carbon substrate utilization in different bioprocess conditions on a genome wide scale.ResultsWe performed microarray analysis on the total mRNA population as well as mRNA that had been fractionated according to ribosome occupancy. Translationally quiescent mRNAs were defined as being associated with single ribosomes (monosomes) and highly-translated mRNAs with multiple ribosomes (polysomes). We found that despite their lower growth rates, global translation was most active in methanol-grown P. pastoris cells, followed by excess glycerol- or glucose-grown cells. Transcript-specific translational responses were found to be minimal, while extensive transcriptional regulation was observed for cells grown on different carbon sources. Due to their respiratory metabolism, cells grown in excess glucose or glycerol had very similar expression profiles. Genes subject to glucose repression were mainly involved in the metabolism of alternative carbon sources including the control of glycerol uptake and metabolism. Peroxisomal and methanol utilization genes were confirmed to be subject to carbon substrate repression in excess glucose or glycerol, but were found to be strongly de-repressed in limiting glucose-conditions (as are often applied in fed batch cultivations) in addition to induction by methanol.ConclusionsP. pastoris cells grown in excess glycerol or glucose have similar transcript profiles in contrast to S. cerevisiae cells, in which the transcriptional response to these carbon sources is very different. The main response to different growth conditions in P. pastoris is transcriptional; translational regulation was not transcript-specific. The high proportion of mRNAs associated with polysomes in methanol-grown cells is a major finding of this study; it reveals that high productivity during methanol induction is directly linked to the growth condition and not only to promoter strength.


Applied and Environmental Microbiology | 2016

Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates

Corinna Rebnegger; Tim Vos; Alexandra B. Graf; Minoska Valli; Jack T. Pronk; Pascale Daran-Lapujade; Diethard Mattanovich

ABSTRACT The yeast Pichia pastoris is a widely used host for recombinant protein production. Understanding its physiology at extremely low growth rates is a first step in the direction of decoupling product formation from cellular growth and therefore of biotechnological relevance. Retentostat cultivation is an excellent tool for studying microbes at extremely low specific growth rates but has so far not been implemented for P. pastoris. Retentostat feeding regimes were based on the maintenance energy requirement (mS ) and maximum biomass yield on glucose (YX /S max) estimated from steady-state glucose-limited chemostat cultures. Aerobic retentostat cultivation enabled reproducible, smooth transitions from a specific growth rate (μ) of 0.025 h−1 to near-zero specific growth rates (μ < 0.001 h−1). At these near-zero specific growth rates, viability remained at least 97%. The value of mS at near-zero growth rates was 3.1 ± 0.1 mg glucose per g biomass and h, which was 3-fold lower than the mS estimated from faster-growing chemostat cultures. This difference indicated that P. pastoris reduces its maintenance energy requirement at extremely low μ, a phenomenon not previously observed in eukaryotes. Intracellular levels of glycogen and trehalose increased, while μ progressively declined during retentostat cultivation. Transcriptional reprogramming toward zero growth included the upregulation of many transcription factors as well as stress-related genes and the downregulation of cell cycle genes. This study underlines the relevance of comparative analysis of maintenance energy metabolism, which has an important impact on large-scale industrial processes. IMPORTANCE The yeast Pichia pastoris naturally lives on trees and can utilize different carbon sources, among them glucose, glycerol, and methanol. In biotechnology, it is widely used for the production of recombinant proteins. For both the understanding of life in its natural habitat and optimized production processes, a better understanding of cell physiology at an extremely low growth rate would be of extraordinary value. Therefore, we have grown P. pastoris in a retentostat, which allows the cultivation of metabolically active cells even at zero growth. Here we reached doubling times as long as 38 days and found that P. pastoris decreases its maintenance energy demand 3-fold during very slow growth, which enables it to survive with a much lower substrate supply than bakers yeast.

Collaboration


Dive into the Minoska Valli's collaboration.

Top Co-Authors

Avatar

Danilo Porro

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Paola Branduardi

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Lilia Alberghina

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Michael Maurer

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena García-Fruitós

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Mónica Martínez-Alonso

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Nuria González-Montalbán

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Diethard Mattanovich

University of Natural Resources and Life Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge