Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minviluz G. Stacey is active.

Publication


Featured researches published by Minviluz G. Stacey.


The Plant Cell | 2008

A LysM Receptor-Like Kinase Plays a Critical Role in Chitin Signaling and Fungal Resistance in Arabidopsis

Jinrong Wan; Xue Cheng Zhang; David J. Neece; Katrina M. Ramonell; Steve Clough; Sung Yong Kim; Minviluz G. Stacey; Gary Stacey

Chitin, a polymer of N-acetyl-d-glucosamine, is found in fungal cell walls but not in plants. Plant cells can perceive chitin fragments (chitooligosaccharides) leading to gene induction and defense responses. We identified a LysM receptor-like protein (LysM RLK1) required for chitin signaling in Arabidopsis thaliana. The mutation in this gene blocked the induction of almost all chitooligosaccharide-responsive genes and led to more susceptibility to fungal pathogens but had no effect on infection by a bacterial pathogen. Additionally, exogenously applied chitooligosaccharides enhanced resistance against both fungal and bacterial pathogens in the wild-type plants but not in the mutant. Together, our data indicate that LysM RLK1 is essential for chitin signaling in plants (likely as part of the receptor complex) and is involved in chitin-mediated plant innate immunity. The LysM RLK1-mediated chitin signaling pathway is unique, but it may share a conserved downstream pathway with the FLS2/flagellin- and EFR/EF-Tu–mediated signaling pathways. Additionally, our work suggests a possible evolutionary relationship between the chitin and Nod factor perception mechanisms due to the similarities between their potential receptors and between the signal molecules perceived by them.


Gene | 1998

Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants

A.G von Arnim; Xing Wang Deng; Minviluz G. Stacey

A series of versatile cloning vectors has been constructed that facilitate the expression of protein fusions to the Aequorea victoria green fluorescent protein (GFP) in plant cells. Amino-terminal- and carboxy-terminal protein fusions have been created and visualized by epifluorescence microscopy, both in transgenic Arabidopsis thaliana and after transient expression in onion epidermal cells. Using tandem dimers and other protein fusions to GFP, we found that the previously described localization of wild-type GFP to the cell nucleus is most likely due to diffusion of GFP across the nuclear envelope rather than to a cryptic nuclear localization signal. A fluorescence-based, quantitative assay for nuclear localization signals is described. In addition, we have employed the previously characterized mutants GFP-S65T and GFP-Y66H in order to allow for the expression of red-shifted and blue fluorescent proteins, respectively, which are suitable for double-labeling studies. Expression of GFP-fusions was controlled by a cauliflower mosaic virus 35S promoter. Using the Arabidopsis COP1 protein as a model, we confirmed a close similarity in the subcellular localization of native COP1 and the GFP-tagged COP1 protein. We demonstrated that COP1 was localized to discrete subnuclear particles and further confirmed that fusion to GFP did not compromise the activity of the wild-type COP1 protein.


Plant Physiology | 2007

The Arabidopsis AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds

Minviluz G. Stacey; Ami Patel; William E. McClain; Melanie Mathieu; Melissa Remley; Elizabeth E. Rogers; Walter Gassmann; Dale G. Blevins; Gary Stacey

The Arabidopsis thaliana AtOPT3 belongs to the oligopeptide transporter (OPT) family, a relatively poorly characterized family of peptide/modified peptide transporters found in archebacteria, bacteria, fungi, and plants. A null mutation in AtOPT3 resulted in embryo lethality, indicating an essential role for AtOPT3 in embryo development. In this article, we report on the isolation and phenotypic characterization of a second AtOPT3 mutant line, opt3-2, harboring a T-DNA insertion in the 5′ untranslated region of AtOPT3. The T-DNA insertion in the AtOPT3 promoter resulted in reduced but sufficient AtOPT3 expression to allow embryo formation in opt3-2 homozygous seeds. Phenotypic analyses of opt3-2 plants revealed three interesting loss-of-function phenotypes associated with iron metabolism. First, reduced AtOPT3 expression in opt3-2 plants resulted in the constitutive expression of root iron deficiency responses regardless of exogenous iron supply. Second, deregulation of root iron uptake processes in opt3-2 roots resulted in the accumulation of very high levels of iron in opt3-2 tissues. Hyperaccumulation of iron in opt3-2 resulted in the formation of brown necrotic areas in opt3-2 leaves and was more pronounced during the seed-filling stage. Third, reduced AtOPT3 expression resulted in decreased accumulation of iron in opt3-2 seeds. The reduced accumulation of iron in opt3-2 seeds is especially noteworthy considering the excessively high levels of accumulated iron in other opt3-2 tissues. AtOPT3, therefore, plays a critical role in two important aspects of iron metabolism, namely, maintenance of whole-plant iron homeostasis and iron nutrition of developing seeds.


Plant Physiology | 2011

Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean

Yung Tsi Bolon; William J. Haun; Wayne Xu; David Grant; Minviluz G. Stacey; Rex T. Nelson; Daniel J. Gerhardt; Jeffrey A. Jeddeloh; Gary Stacey; Gary J. Muehlbauer; James H. Orf; Seth L. Naeve; Robert M. Stupar; Carroll P. Vance

Mutagenized populations have become indispensable resources for introducing variation and studying gene function in plant genomics research. In this study, fast neutron (FN) radiation was used to induce deletion mutations in the soybean (Glycine max) genome. Approximately 120,000 soybean seeds were exposed to FN radiation doses of up to 32 Gray units to develop over 23,000 independent M2 lines. Here, we demonstrate the utility of this population for phenotypic screening and associated genomic characterization of striking and agronomically important traits. Plant variation was cataloged for seed composition, maturity, morphology, pigmentation, and nodulation traits. Mutants that showed significant increases or decreases in seed protein and oil content across multiple generations and environments were identified. The application of comparative genomic hybridization (CGH) to lesion-induced mutants for deletion mapping was validated on a midoleate x-ray mutant, M23, with a known FAD2-1A (for fatty acid desaturase) gene deletion. Using CGH, a subset of mutants was characterized, revealing deletion regions and candidate genes associated with phenotypes of interest. Exome resequencing and sequencing of PCR products confirmed FN-induced deletions detected by CGH. Beyond characterization of soybean FN mutants, this study demonstrates the utility of CGH, exome sequence capture, and next-generation sequencing approaches for analyses of mutant plant genomes. We present this FN mutant soybean population as a valuable public resource for future genetic screens and functional genomics research.


The Plant Cell | 1999

Discrete Domains Mediate the Light-Responsive Nuclear and Cytoplasmic Localization of Arabidopsis COP1

Minviluz G. Stacey; Stephanie N. Hicks; Albrecht G. von Arnim

The Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) protein plays a critical role in the repression of photomorphogenesis during Arabidopsis seedling development. We investigated the control of COP1 partitioning between nucleus and cytoplasm, which has been implicated in the regulation of COP1 activity, by using fusion proteins between COP1 and β-glucuronidase or the green fluorescent protein. Transient expression assays using onion epidermal cells and data from hypocotyl cells of stably transformed Arabidopsis demonstrated that COP1 carries a single, bipartite nuclear localization signal that functions independently of light. Nuclear exclusion was mediated by a novel and distinct signal, bordering the zinc-finger and coiled-coil motifs, that was able to redirect a heterologous nuclear protein to the cytoplasm. The cytoplasmic localization signal functioned in a light-independent manner. Light regulation of nuclear localization was reconstituted by combining the individual domains containing the nuclear localization signal and the cytoplasmic localization signal; the WD-40 repeat domain of COP1 was not required. However, phenotypic analysis of transgenic seedlings suggested that the constitutively nuclear-localized WD-40 repeat domain was able to mimic aspects of COP1 function, as indicated by exaggerated hypocotyl elongation under light conditions.


Planta | 2006

Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction

Minviluz G. Stacey; Hiroki Osawa; Ami Patel; Walter Gassmann; Gary Stacey

AtOPT promoter-GUS fusions were constructed for six of the nine known, putative oligopeptide transporters (OPTs) in Arabidopsis thaliana and used to examine AtOPT expression at various stages of plant development. AtOPT1, AtOPT3, AtOPT4, AtOPT6 and AtOPT7 were expressed in the embryonic cotyledons prior to root radicle emergence. Except for AtOPT8, which gave weak expression, all AtOPTs were strongly expressed in post-germinative seedlings with strongest expression in vascular tissues of cotyledons and hypocotyls. Preferential expression of AtOPTs in vascular tissues was also observed in cotyledons, leaves, hypocotyls, roots, flowers, siliques, and seed funiculi of seedlings and adult plants. Differential tissue-specific expression was observed for specific AtOPTs. For example, AtOPT1, AtOPT3 and AtOPT8 were uniquely expressed in pollen. Only AtOPT1 was expressed in growing pollen tubes, while only AtOPT6 was observed in ovules. AtOPT8 was transiently expressed in seeds during early stages of embryogenesis. Iron limitation was found to enhance expression of AtOPT3. These data suggest distinct cellular roles for specific AtOPTs including nitrogen mobilization during germination and senescence, pollen tube growth, pollen and ovule development, seed formation and metal transport.


Molecular Microbiology | 2008

Population density-dependent regulation of the Bradyrhizobium japonicum nodulation genes.

John T. Loh; Joyce P.-Y. Yuen-Tsai; Minviluz G. Stacey; D. Lohar; April Welborn; Gary Stacey

The nodulation genes of Bradyrhizobium japonicum are essential for infection and establishment of a nitrogen‐fixing symbiosis. Here, we demonstrate that plant‐produced isoflavones induce nodulation gene expression in a population density‐dependent fashion. Nodulation gene induction is highest at a low population density and significantly reduced in more dense cultures. A quorum signal molecule in the conditioned medium of B. japonicum cultures mediates this repression. Repression in response to the quorum signal results from the induction of NolA which, in turn, induces NodD2 leading to inhibition of nod gene expression. Consistent with this, nolA–lacZ and nodD2–lacZ expression increased with increasing population density. Unlike the wild type, the ability to induce nodY–lacZ expression did not decline with population density in a NolA mutant. Normally, nod gene expression is repressed in planta (i.e. within nodules). However, expression of a nodY–GUS fusion was not repressed in a NolA mutant, suggesting that quorum‐sensing control may mediate in planta repression of the nod genes. Addition of conditioned medium to cultures significantly reduced nod gene expression. Treatment of inoculant cultures with conditioned medium also reduced the ability of B. japonicum to nodulate soybean plants.


Journal of Biological Chemistry | 1999

A novel motif mediates the targeting of the Arabidopsis COP1 protein to subnuclear foci.

Minviluz G. Stacey; Albrecht G. von Arnim

The constitutive photomorphogenesis 1 (COP1) protein of Arabidopsis thaliana accumulates in discrete subnuclear foci. To better understand the role of subnuclear architecture in COP1-mediated gene expression, we investigated the structural motifs of COP1 that mediate its localization to subnuclear foci using mutational analysis with green fluorescent protein as a reporter. In a transient expression assay, a subnuclear localization signal consisting of 58 residues between amino acids 120 and 177 of COP1 was able to confer speckled localization onto the heterologous nuclear NIa protein from tobacco etch virus. The subnuclear localization signal overlaps two previously characterized motifs, a cytoplasmic localization signal and a putative α-helical coiled-coil domain that has been implicated in COP1 dimerization. Moreover, phenotypically lethal mutations in the carboxyl-terminal WD-40 repeats inhibited localization to subnuclear foci, consistent with a functional role for the accumulation of COP1 at subnuclear sites.


Molecular Plant | 2014

OPT3 Is a Component of the Iron-Signaling Network between Leaves and Roots and Misregulation of OPT3 Leads to an Over-Accumulation of Cadmium in Seeds

David G. Mendoza-Cózatl; Qingqing Xie; Garo Z. Akmakjian; Timothy O. Jobe; Ami Patel; Minviluz G. Stacey; Lihui Song; Dustin Wayne Demoin; Silvia S. Jurisson; Gary Stacey; Julian I. Schroeder

SUMMARY Long-distance communication between leaves and roots are key to properly regulate the uptake of trace metals from the soil. The molecular basis of this shoot-to-root signaling is currently unknown. In this manuscript, we describe the role of OPT3 in the shoot-to-root signaling of the iron status in Arabidopsis. We also show that reduced expression of OPT3 induces an over-accumulation of the toxic metal cadmium, but not other metals, in seeds.


Plant Physiology | 2013

Tnt1 Retrotransposon Mutagenesis: A Tool for Soybean Functional Genomics

Yaya Cui; Shyam Barampuram; Minviluz G. Stacey; C. Nathan Hancock; Seth D. Findley; Melanie Mathieu; Zhanyuan J. Zhang; Wayne A. Parrott; Gary Stacey

Insertional mutagenesis is a powerful tool for determining gene function in both model and crop plant species. Tnt1, the transposable element of tobacco (Nicotiana tabacum) cell type 1, is a retrotransposon that replicates via an RNA copy that is reverse transcribed and integrated elsewhere in the plant genome. Based on studies in a variety of plants, Tnt1 appears to be inactive in normal plant tissue but can be reactivated by tissue culture. Our goal was to evaluate the utility of the Tnt1 retrotransposon as a mutagenesis strategy in soybean (Glycine max). Experiments showed that the Tnt1 element was stably transformed into soybean plants by Agrobacterium tumefaciens-mediated transformation. Twenty-seven independent transgenic lines carrying Tnt1 insertions were generated. Southern-blot analysis revealed that the copy number of transposed Tnt1 elements ranged from four to 19 insertions, with an average of approximately eight copies per line. These insertions showed Mendelian segregation and did not transpose under normal growth conditions. Analysis of 99 Tnt1 flanking sequences revealed insertions into 62 (62%) annotated genes, indicating that the element preferentially inserts into protein-coding regions. Tnt1 insertions were found in all 20 soybean chromosomes, indicating that Tnt1 transposed throughout the soybean genome. Furthermore, fluorescence in situ hybridization experiments validated that Tnt1 inserted into multiple chromosomes. Passage of transgenic lines through two different tissue culture treatments resulted in Tnt1 transposition, significantly increasing the number of insertions per line. Thus, our data demonstrate the Tnt1 retrotransposon to be a powerful system that can be used for effective large-scale insertional mutagenesis in soybean.

Collaboration


Dive into the Minviluz G. Stacey's collaboration.

Top Co-Authors

Avatar

Gary Stacey

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ami Patel

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

Yaya Cui

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Lohar

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge