Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miquel Mulero is active.

Publication


Featured researches published by Miquel Mulero.


Bioinformatics | 2012

DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets

Adrià Cereto-Massagué; Laura Guasch; Cristina Valls; Miquel Mulero; Gerard Pujadas; Santiago Garcia-Vallvé

UNLABELLED Decoys are molecules that are presumed to be inactive against a target (i.e. will not likely bind to the target) and are used to validate the performance of molecular docking or a virtual screening workflow. The Directory of Useful Decoys database (http://dud.docking.org/) provides a free directory of decoys for use in virtual screening, though it only contains a limited set of decoys for 40 targets.To overcome this limitation, we have developed an application called DecoyFinder that selects, for a given collection of active ligands of a target, a set of decoys from a database of compounds. Decoys are selected if they are similar to active ligands according to five physical descriptors (molecular weight, number of rotational bonds, total hydrogen bond donors, total hydrogen bond acceptors and the octanol-water partition coefficient) without being chemically similar to any of the active ligands used as an input (according to the Tanimoto coefficient between MACCS fingerprints). To the best of our knowledge, DecoyFinder is the first application designed to build target-specific decoy sets. AVAILABILITY A complete description of the software is included on the application home page. A validation of DecoyFinder on 10 DUD targets is provided as Supplementary Table S1. DecoyFinder is freely available at http://URVnutrigenomica-CTNS.github.com/DecoyFinder.


Methods | 2015

Molecular fingerprint similarity search in virtual screening

Adrià Cereto-Massagué; María José Ojeda; Cristina Valls; Miquel Mulero; Santiago Garcia-Vallvé; Gerard Pujadas

Molecular fingerprints have been used for a long time now in drug discovery and virtual screening. Their ease of use (requiring little to no configuration) and the speed at which substructure and similarity searches can be performed with them - paired with a virtual screening performance similar to other more complex methods - is the reason for their popularity. However, there are many types of fingerprints, each representing a different aspect of the molecule, which can greatly affect search performance. This review focuses on commonly used fingerprint algorithms, their usage in virtual screening, and the software packages and online tools that provide these algorithms.


Journal of Pineal Research | 2003

Aluminum-induced pro-oxidant effects in rats: protective role of exogenous melatonin

José L. Esparza; Mercedes Gómez; Marta Romeu; Miquel Mulero; Domènec J. Sánchez; Jordi Mallol; José L. Domingo

Abstract: In recent years, it has been suggested that oxidative stress is a feature of Alzheimers disease in which aluminum (Al) could exacerbate oxidative events. The goal of the present study was to assess in rats the pro‐oxidant effects induced by Al exposure, as well as the protective role of exogenous melatonin. Two groups of male rats were intraperitoneally injected with Al only or melatonin only, at doses of 5 and 10 mg/kg/day, respectively for 8 wk. During this period, a third group of animals received Al (5 mg/kg/day) and melatonin (10 mg/kg/day). At the end of the treatment period, rats were anesthesized and arterial blood was obtained. Thereafter, animals were killed and liver and brain (cortex, hippocampus and cerebellum) were removed. These tissues were processed to examine oxidative stress markers: glutathione transferase (GST), reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), thiobarbituric acid reactive substances (TBARS), as well as protein content. Samples of these tissues were also used to determine Al, Fe, Mn, Cu and Zn concentrations. The results show that Al exposure promotes oxidative stress in different neural areas, including those in which Al concentrations were not significantly increased. The biochemical changes observed in neural tissues show that Al acts as pro‐oxidant, while melatonin exerts an antioxidant action in Al‐treated animals. The protective effects of melatonin against cellular damage caused by Al‐induced oxidative stress, together with its low toxicity, make melatonin worthy of investigation as a potential supplement to be included in the treatment of neurological disorders in which the oxidative effects must be minimized.


Experimental Gerontology | 2006

Changes in oxidative stress parameters and neurodegeneration markers in the brain of the senescence-accelerated mice SAMP-8

Francesc X. Sureda; Javier Gutierrez-Cuesta; Marta Romeu; Miquel Mulero; Anna Maria Canudas; Antoni Camins; Jordi Mallol; Mercè Pallàs

The senescence-accelerated strains of mice (SAMP) are well-characterized animal models of senescence. Senescence may be related to enhanced production or defective control of reactive oxygen species, which lead to neuronal damage. Therefore, the activity of various oxidative-stress related enzymes was determined in the cortex of 5 months-old senescence-accelerated mice prone-8 (SAMP-8) of both sexes and compared with senescence-accelerated mice-resistant-1 (SAMR-1). Glutathione reductase and peroxidase activities in SAMP-8 male mice were lower than in male SAMR-1, and a decreased catalase activity was found in both male and female SAMP-8 mice, which correlates with the lower catalase expression found by Western blotting. Nissl staining showed marked loss of neuronal cells in the cerebral cortex of five month-old SAMP-8 mice. SAMP-8 mice also had marked astrogliosis and microgliosis. We also found an increase in caspase-3 and calpain activity in the cortex. In addition, we observed morphological changes in the immunostaining of tau protein in SAMP-8, indicative of a loss of their structural function. Altogether, these results show that, at as early as 5 months of age, SAMP-8 mice have cytological and molecular alterations indicative of neurodegeneration in the cerebral cortex and suggestive of altered control of the production of oxidative species and hyper-activation of calcium-dependent enzymes.


Methods | 2015

Tools for in silico target fishing

Adrià Cereto-Massagué; María José Ojeda; Cristina Valls; Miquel Mulero; Gerard Pujadas; Santiago Garcia-Vallvé

Computational target fishing methods are designed to identify the most probable target of a query molecule. This process may allow the prediction of the bioactivity of a compound, the identification of the mode of action of known drugs, the detection of drug polypharmacology, drug repositioning or the prediction of the adverse effects of a compound. The large amount of information regarding the bioactivity of thousands of small molecules now allows the development of these types of methods. In recent years, we have witnessed the emergence of many methods for in silico target fishing. Most of these methods are based on the similarity principle, i.e., that similar molecules might bind to the same targets and have similar bioactivities. However, the difficult validation of target fishing methods hinders comparisons of the performance of each method. In this review, we describe the different methods developed for target prediction, the bioactivity databases most frequently used by these methods, and the publicly available programs and servers that enable non-specialist users to obtain these types of predictions. It is expected that target prediction will have a large impact on drug development and on the functional food industry.


Journal of Toxicology and Environmental Health | 2006

Oxidative Stress-Related Markers and Langerhans Cells in a Hairless Rat Model Exposed to UV Radiation

Miquel Mulero; Marta Romeu; Montserrat Giralt; Jaume Folch; Maria Rosa Nogués; ngels Fortuño; Francesc X. Sureda; Victoria Linares; Maria Cabré; Jose L. Paternain; Jordi Mallol

Biomarkers related to the oxidative stress in blood and epidermis and the number of Langerhans cells were determined in hairless rats after acute irradiation with 1.54, 1.93, or 2.41 J/cm2 of ultraviolet (UV) light and chronic exposure to 13 suberythemal UV doses of 1.1 J/cm2 for 2 mo. After acute UV irradiation, in epidermis, the thiobarbituric acid-reactive substances (TBARS) content increased at the highest UV dose, whereas the activities of glutathione S-transferase and catalase rose and the oxidized glutathione (GSSG) content diminished at all UV doses. In erythrocytes, glutathione S-transferase activity increased at the two lowest UV doses, glutathione peroxidase activity rose at all UV doses, and catalase activity increased after the highest UV dose. In plasma, the TBARS content and the reduced glutathione (GSH)/GSSG ratio increased at the highest UV dose; the number of Langerhans cells decreased at all UV doses. Linear Pearson correlation analysis revealed many relationships between different biomarkers, and multiple linear regression analysis indicated that the number of Langerhans cells was predicted by epidermal GSSG and catalase (R 2 = .64) and by erythrocytic glutathione peroxidase and GSSG (R 2 = .72). After suberythemal UV radiation, in epidermis, the GST activity and the content of GSH and GSSG increased; in erythrocytes, the GST activity decreased and the GSH/GSSG ratio increased. Thus, the hairless rat appears to be a useful model for studying the oxidative stress-related mechanisms after UV radiation, which are involved in the loss of the immune capacity mediated by Langerhans cells, even at suberythemal doses. This study was conducted at the School of Medicine, Rovira i Virgili University, Reus, Spain. This work was supported by a Research and Development grant (SAF-99-0048) from the Spanish Ministry of Health and Social Security and cosponsored by Novartis CH (Spain). We thank Prof. J. Fernández of the School of Medicine (Reus) for his help with the statistical analyses.


PLOS ONE | 2012

Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation.

Laura Guasch; Esther Sala; Anna Castell-Auví; Lídia Cedó; Klaus R. Liedl; Gerhard Wolber; Markus Muehlbacher; Miquel Mulero; Montserrat Pinent; Anna Ardévol; Cristina Valls; Gerard Pujadas; Santiago Garcia-Vallvé

Background Although there are successful examples of the discovery of new PPARγ agonists, it has recently been of great interest to identify new PPARγ partial agonists that do not present the adverse side effects caused by PPARγ full agonists. Consequently, the goal of this work was to design, apply and validate a virtual screening workflow to identify novel PPARγ partial agonists among natural products. Methodology/Principal Findings We have developed a virtual screening procedure based on structure-based pharmacophore construction, protein-ligand docking and electrostatic/shape similarity to discover novel scaffolds of PPARγ partial agonists. From an initial set of 89,165 natural products and natural product derivatives, 135 compounds were identified as potential PPARγ partial agonists with good ADME properties. Ten compounds that represent ten new chemical scaffolds for PPARγ partial agonists were selected for in vitro biological testing, but two of them were not assayed due to solubility problems. Five out of the remaining eight compounds were confirmed as PPARγ partial agonists: they bind to PPARγ, do not or only moderately stimulate the transactivation activity of PPARγ, do not induce adipogenesis of preadipocyte cells and stimulate the insulin-induced glucose uptake of adipocytes. Conclusions/Significance We have demonstrated that our virtual screening protocol was successful in identifying novel scaffolds for PPARγ partial agonists.


Journal of Agricultural and Food Chemistry | 2011

Acute administration of grape seed proanthocyanidin extract modulates energetic metabolism in skeletal muscle and BAT mitochondria.

David Pajuelo; Sabina Díaz; Helena Quesada; Anabel Fernández-Iglesias; Miquel Mulero; Anna Arola-Arnal; Salvadó Mj; Cinta Bladé; Lluís Arola

Proanthocyanidin consumption might reduce the risk of developing several pathologies, such as inflammation, oxidative stress and cardiovascular diseases. The beneficial effects of proanthocyanidins are attributed to their antioxidant properties, although they also can modulate gene expression at the transcriptional level. Little is known about the effect of proanthocyanidins on mitochondrial function and energy metabolism. In this context, the objective of this study was to determine the effect of an acute administration of grape seed proanthocyanidin extract (GSPE) on mitochondrial function and energy metabolism. To examine this effect, male Wistar rats fasted for fourteen hours, and then they were orally administered lard oil containing GSPE or were administered lard oil only. Liver, muscle and brown adipose tissue (BAT) were used to study enzymatic activity and gene expression of proteins related to energetic metabolism. Moreover, the gastrocnemius muscle and BAT mitochondria were used to perform high-resolution respirometry. The results showed that, after 5 h, the GSPE administration significantly lowers plasma triglycerides, free fatty acids, glycerol and urea concentrations. In skeletal muscle, GSPE lowers FATP1 mRNA levels and increases mitochondrial oxygen consumption, using pyruvate as the substrate, suggesting a promotion of glycosidic metabolism. Furthermore, GSPE increased the genetic expression of key genes in energy metabolism such as peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC1α), and modulated the enzyme activity of proteins, which are involved in the citric acid cycle and electron transport chain (ETC) in BAT. In conclusion, GSPE affects mainly the skeletal muscle and BAT mitochondria, increasing their oxidative capacity rapidly after acute supplementation.


Journal of Computer-aided Molecular Design | 2011

Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity

Laura Guasch; Esther Sala; Cristina Valls; Mayte Blay; Miquel Mulero; Lluís Arola; Gerard Pujadas; Santiago Garcia-Vallvé

Peroxisome Proliferator-Activated Receptor γ (PPARγ) full agonists are molecules with powerful insulin-sensitizing action that are used as antidiabetic drugs. Unfortunately, these compounds also present various side effects. Recent results suggest that effective PPARγ agonists should show a low transactivation activity but a high binding affinity to inhibit phosphorylation at Ser273. We use several structure activity relationship studies of synthetic PPARγ agonists to explore the different binding features of full and partial PPARγ agonists with the aim of differentiating the features needed for binding and those needed for the transactivation activity of PPARγ. Our results suggest that effective partial agonists should have a hydrophobic moiety and an acceptor site with an appropriate conformation to interact with arm II and establish a hydrogen bond with Ser342 or an equivalent residue at arm III. Despite the fact that interactions with arm I increase the binding affinity, this region should be avoided in order to not increase the transactivation activity of potential PPARγ partial agonists.


PLOS ONE | 2014

Resveratrol Enhances Palmitate-Induced ER Stress and Apoptosis in Cancer Cells

Cristina Rojas; Belén Pan-Castillo; Cristina Valls; Gerard Pujadas; Santi Garcia-Vallve; Lluís Arola; Miquel Mulero

Background Palmitate, a saturated fatty acid (FA), is known to induce toxicity and cell death in various types of cells. Resveratrol (RSV) is able to prevent pathogenesis and/or decelerate the progression of a variety of diseases. Several in vitro and in vivo studies have also shown a protective effect of RSV on fat accumulation induced by FAs. Additionally, endoplasmic reticulum (ER) stress has recently been linked to cellular adipogenic responses. To address the hypothesis that the RSV effect on excessive fat accumulation promoted by elevated saturated FAs could be partially mediated by a reduction of ER stress, we studied the RSV action on experimentally induced ER stress using palmitate in several cancer cell lines. Principal Findings We show that, unexpectedly, RSV promotes an amplification of palmitate toxicity and cell death and that this mechanism is likely due to a perturbation of palmitate accumulation in the triglyceride form and to a less important membrane fluidity variation. Additionally, RSV decreases radical oxygen species (ROS) generation in palmitate-treated cells but leads to enhanced X-box binding protein-1 (XBP1) splicing and C/EBP homologous protein (CHOP) expression. These molecular effects are induced simultaneously to caspase-3 cleavage, suggesting that RSV promotes palmitate lipoapoptosis primarily through an ER stress-dependent mechanism. Moreover, the lipotoxicity reversion induced by eicosapentaenoic acid (EPA) or by a liver X receptor (LXR) agonist reinforces the hypothesis that RSV-mediated inhibition of palmitate channeling into triglyceride pools could be a key factor in the aggravation of palmitate-induced cytotoxicity. Conclusions Our results suggest that RSV exerts its cytotoxic role in cancer cells exposed to a saturated FA context primarily by triglyceride accumulation inhibition, probably leading to an intracellular palmitate accumulation that triggers a lipid-mediated cell death. Additionally, this cell death is promoted by ER stress through a CHOP-mediated apoptotic process and may represent a potential anticancer strategy.

Collaboration


Dive into the Miquel Mulero's collaboration.

Top Co-Authors

Avatar

Gerard Pujadas

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar

Cristina Valls

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Guasch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lluís Arola

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar

Jordi Blanco

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cinta Bladé

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordi Mallol

Rovira i Virgili University

View shared research outputs
Researchain Logo
Decentralizing Knowledge