Miquel Ribas-Carbo
Carnegie Institution for Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miquel Ribas-Carbo.
Plant Science | 2012
Jaume Flexas; Margaret M. Barbour; Oliver Brendel; Hernán M. Cabrera; Marc Carriquí; Antonio Diaz-Espejo; Cyril Douthe; Erwin Dreyer; Juan Pedro Ferrio; Jorge Gago; Alexander Gallé; Jeroni Galmés; Naomi Kodama; Hipólito Medrano; Ülo Niinemets; José Javier Peguero-Pina; Alicia Pou; Miquel Ribas-Carbo; M. Tomás; Tiina Tosens; Charles R. Warren
Mesophyll diffusion conductance to CO(2) is a key photosynthetic trait that has been studied intensively in the past years. The intention of the present review is to update knowledge of g(m), and highlight the important unknown and controversial aspects that require future work. The photosynthetic limitation imposed by mesophyll conductance is large, and under certain conditions can be the most significant photosynthetic limitation. New evidence shows that anatomical traits, such as cell wall thickness and chloroplast distribution are amongst the stronger determinants of mesophyll conductance, although rapid variations in response to environmental changes might be regulated by other factors such as aquaporin conductance. Gaps in knowledge that should be research priorities for the near future include: how different is mesophyll conductance among phylogenetically distant groups and how has it evolved? Can mesophyll conductance be uncoupled from regulation of the water path? What are the main drivers of mesophyll conductance? The need for mechanistic and phenomenological models of mesophyll conductance and its incorporation in process-based photosynthesis models is also highlighted.
Plant Physiology | 2005
Miquel Ribas-Carbo; Nicolas L. Taylor; Larry Giles; Sílvia Busquets; Patrick M. Finnegan; David A. Day; Hans Lambers; Hipólito Medrano; Joseph A. Berry; Jaume Flexas
The effect of water stress on respiration and mitochondrial electron transport has been studied in soybean (Glycine max) leaves, using the oxygen-isotope-fractionation technique. Treatments with three levels of water stress were applied by irrigation to replace 100%, 50%, and 0% of daily water use by transpiration. The levels of water stress were characterized in terms of light-saturated stomatal conductance (gs): well irrigated (gs > 0.2 mol H2O m−2 s−1), mildly water stressed (gs between 0.1 and 0.2 mol H2O m−2 s−1), and severely water stressed (gs < 0.1 mol H2O m−2 s−1). Although net photosynthesis decreased by 40% and 70% under mild and severe water stress, respectively, the total respiratory oxygen uptake (Vt) was not significantly different at any water-stress level. However, severe water stress caused a significant shift of electrons from the cytochrome to the alternative pathway. The electron partitioning through the alternative pathway increased from 10% to 12% under well-watered or mild water-stress conditions to near 40% under severe water stress. Consequently, the calculated rate of mitochondrial ATP synthesis decreased by 32% under severe water stress. Unlike many other stresses, water stress did not affect the levels of mitochondrial alternative oxidase protein. This suggests a biochemical regulation (other than protein synthesis) that causes this mitochondrial electron shift.
Plant Cell and Environment | 2008
Ralf Kaldenhoff; Miquel Ribas-Carbo; Jaume Flexas Sans; Claudio Lovisolo; Marlies Heckwolf; Norbert Uehlein
The impact of aquaporin function on plant water balance is discussed. The significance of these proteins for root water uptake, water conductance in the xylem, including embolism refilling and the role of plant aquaporins in leaf physiology, is described. Emphasis is placed on certain aspects of water stress reactions and the correlation of aquaporins to abscisic acid as well as on the relation of water and CO2 permeability in leaves.
Journal of Experimental Botany | 2009
Thijs L. Pons; Jaume Flexas; Susanne von Caemmerer; John R. Evans; Bernard Genty; Miquel Ribas-Carbo; Enrico Brugnoli
The three most commonly used methods for estimating mesophyll conductance (g(m)) are described. They are based on gas exchange measurements either (i) by themselves; (ii) in combination with chlorophyll fluorescence quenching analysis; or (iii) in combination with discrimination against (13)CO(2). To obtain reliable estimates of g(m), the highest possible accuracy of gas exchange is required, particularly when using small leaf chambers. While there may be problems in achieving a high accuracy with leaf chambers that clamp onto a leaf with gaskets, guidelines are provided for making necessary corrections that increase reliability. All methods also rely on models for the calculation of g(m) and are sensitive to variation in the values of the model parameters. The sensitivity to these factors and to measurement error is analysed and ways to obtain the most reliable g(m) values are discussed. Small leaf areas can best be measured using one of the fluorescence methods. When larger leaf areas can be measured in larger chambers, the online isotopic methods are preferred. Using the large CO(2) draw-down provided by big chambers, and the isotopic method, is particularly important when measuring leaves with high g(m) that have a small difference in [CO(2)] between the substomatal cavity and the site of carboxylation in the chloroplast (C(i)-C(c) gradient). However, equipment for the fluorescence methods is more easily accessible. Carbon isotope discrimination can also be measured in recently synthesized carbohydrates, which has its advantages under field conditions when large number of samples must be processed. The curve-fitting method that uses gas exchange measurements only is not preferred and should only be used when no alternative is available. Since all methods have their weaknesses, the use of two methods for the estimation of g(m), which are as independent as possible, is recommended.
Journal of Experimental Botany | 2009
Jaume Flexas; Matilde Barón; Josefina Bota; Jean-Marc Ducruet; Alexander Gallé; Jeroni Galmés; Miguel Jiménez; Alicia Pou; Miquel Ribas-Carbo; Carlota Sajnani; M. Tomás; Hipólito Medrano
The hybrid Richter-110 (Vitis berlandierixVitis rupestris) has the reputation of being a genotype strongly adapted to drought. A study was performed with plants of R-110 subjected to sustained water-withholding to induce acclimation to two different levels of water stress, followed by rewatering to induce recovery. The goal was to analyse how photosynthesis is regulated during acclimation to water stress and recovery. In particular, the regulation of stomatal conductance (g(s)), mesophyll conductance to CO(2) (g(m)), leaf photochemistry (chlorophyll fluorescence and thermoluminescence), and biochemistry (V(c,max)) were assessed. During water stress, g(s) declined to 0.1 and less than 0.05 mol CO(2) m(-2) s(-1) in moderately and severely water-stressed plants, respectively, and was kept quite constant during an acclimation period of 1-week. Leaf photochemistry proved to be very resistant to the applied water-stress conditions. By contrast, g(m) and V(c,max) were affected by water stress, but they were not kept constant during the acclimation period. g(m) was initially unaffected by water stress, and V(c,max) even increased above control values. However, after several days of acclimation to water stress, both parameters declined below (g(m)) or at (V(c,max)) control values. For the latter two parameters there seemed to be an interaction between water stress and cumulative irradiance, since both recovered to control values after several cloudy days despite water stress. A photosynthesis limitation analysis revealed that diffusional limitations and not biochemical limitations accounted for the observed decline in photosynthesis during water stress and slow recovery after rewatering, both in moderately and severely stressed plants. However, the relative contribution of stomatal (SL) and mesophyll conductance (MCL) limitations changes during acclimation to water stress, from predominant SL early during water stress to similar SL and MCL after acclimation. Finally, photosynthesis recovery after rewatering was mostly limited by SL, since stomatal closure recovered much more slowly than g(m).
Journal of Experimental Botany | 2013
M. Tomás; Jaume Flexas; Lucian Copolovici; Jeroni Galmés; Lea Hallik; Hipólito Medrano; Miquel Ribas-Carbo; Tiina Tosens; Vivian Vislap; Ülo Niinemets
Foliage photosynthetic and structural traits were studied in 15 species with a wide range of foliage anatomies to gain insight into the importance of key anatomical traits in the limitation of diffusion of CO2 from substomatal cavities to chloroplasts. The relative importance of different anatomical traits in constraining CO2 diffusion was evaluated using a quantitative model. Mesophyll conductance (g m) was most strongly correlated with chloroplast exposed surface to leaf area ratio (S c/S) and cell wall thickness (T cw), but, depending on foliage structure, the overall importance of g m in constraining photosynthesis and the importance of different anatomical traits in the restriction of CO2 diffusion varied. In species with mesophytic leaves, membrane permeabilities and cytosol and stromal conductance dominated the variation in g m. However, in species with sclerophytic leaves, g m was mostly limited by T cw. These results demonstrate the major role of anatomy in constraining mesophyll diffusion conductance and, consequently, in determining the variability in photosynthetic capacity among species.
Plant Physiology | 1997
Adrian M. Lennon; Urs Neuenschwander; Miquel Ribas-Carbo; Larry Giles; John Ryals; James N. Siedow
Salicylic acid (SA) is a signal in systemic acquired resistance and an inducer of the alternative oxidase protein in tobacco (Nicotiana tabacum cv Xanthi nc) cell suspensions and during thermogenesis in aroid spadices. The effects of SA on the levels of alternative oxidase protein and the pathogenesis-related 1a mRNA (a marker for systemic acquired resistance), and on the partitioning of electrons between the Cyt and alternative pathways were investigated in tobacco. Leaves were treated with 1.0 mM SA and mitochondria isolated at times between 1 h and 3 d after treatment. Alternative oxidase protein increased 2.5-fold within 5 h, reached a maximum (9-fold) after 12 h, and remained at twice the level of control plants after 3 d. Measurements of isotope fractionation of 18O by intact leaf tissue gave a value of 23% at all times, identical to that of control plants, indicating a constant 27 to 30% of electron-flow partitioning to the alternative oxidase independent of treatment with SA. Transgenic NahG tobacco plants that express bacterial salicylate hydroxylase and possess very low levels of SA gave a fractionation of 23% and showed control levels of alternative oxidase protein, suggesting that steady-state alternative oxidase accumulates in an SA-independent manner. Infection of plants with tobacco mosaic virus resulted in an increase in alternative oxidase protein in both infected and systemic leaves, but no increase was observed in comparably infected NahG plants. Total respiration rate and partitioning of electrons to the alternative pathway in virus-infected plants was comparable to that in uninfected controls.
Plant Physiology | 1995
Miquel Ribas-Carbo; Joseph A. Berry; Dan Yakir; Larry Giles; Sharon A. Robinson; Adrian M. Lennon; James N. Siedow
The contribution of the cyanide-resistant, alternative pathway to plant mitochondrial electron transport has been studied using a modified aqueous phase on-line mass spectrometry-gas chromatography system. This technique permits direct measurement of the partitioning of electrons between the cytochrome and alternative pathways in the absence of added inhibitors. We demonstrate that in mitochondria isolated from soybean (Glycine max L. cv Ransom) cotyledons, the alternative pathway contributes significantly to oxygen uptake under state 4 conditions, when succinate is used as a substrate. However, when NADH is the substrate, addition of pyruvate, an allosteric activator of the alternative pathway, is required to achieve the same level of alternative pathway activity. Under state 3 conditions, when the reduction state of the ubiquinone pool is low, the addition of pyruvate allows the alternative pathway to compete with the cytochrome pathway for electrons from the ubiquinone pool when the cytochrome pathway is not saturated. These results provide direct experimental verification of the kinetics consequences of pyruvate addition on the partitioning of electron flow between the two respiratory pathways. This distribution of electrons between the two unsaturated pathways could not be measured using conventional oxygen electrode methods and illustrates a clear advantage of the mass spectrometry technique. These results have significant ramifications for studies of plant respiration using the oxygen electrode, particularly those studies involving intact tissues.
Photosynthesis Research | 2013
Jaume Flexas; Ülo Niinemets; Alexander Gallé; Margaret M. Barbour; Mauro Centritto; Antonio Diaz-Espejo; Cyril Douthe; Jeroni Galmés; Miquel Ribas-Carbo; Pedro L. Rodriguez; Francesc Rosselló; Raju Y. Soolanayakanahally; M. Tomás; Ian J. Wright; Graham D. Farquhar; Hipólito Medrano
A key objective for sustainable agriculture and forestry is to breed plants with both high carbon gain and water-use efficiency (WUE). At the level of leaf physiology, this implies increasing net photosynthesis (AN) relative to stomatal conductance (gs). Here, we review evidence for CO2 diffusional constraints on photosynthesis and WUE. Analyzing past observations for an extensive pool of crop and wild plant species that vary widely in mesophyll conductance to CO2 (gm), gs, and foliage AN, it was shown that both gs and gm limit AN, although the relative importance of each of the two conductances depends on species and conditions. Based on Fick’s law of diffusion, intrinsic WUE (the ratio AN/gs) should correlate on the ratio gm/gs, and not gm itself. Such a correlation is indeed often observed in the data. However, since besides diffusion AN also depends on photosynthetic capacity (i.e., Vc,max), this relationship is not always sustained. It was shown that only in a very few cases, genotype selection has resulted in simultaneous increases of both AN and WUE. In fact, such a response has never been observed in genetically modified plants specifically engineered for either reduced gs or enhanced gm. Although increasing gm alone would result in increasing photosynthesis, and potentially increasing WUE, in practice, higher WUE seems to be only achieved when there are no parallel changes in gs. We conclude that for simultaneous improvement of AN and WUE, genetic manipulation of gm should avoid parallel changes in gs, and we suggest that the appropriate trait for selection for enhanced WUE is increased gm/gs.
The Plant Cell | 2007
Guillaume Vidal; Miquel Ribas-Carbo; Marie Garmier; Guy Dubertret; Allan G. Rasmusson; Chantal Mathieu; Christine H. Foyer; Rosine De Paepe
Alternative oxidase (AOX) functions in stress resistance by preventing accumulation of reactive oxygen species (ROS), but little is known about in vivo partitioning of electron flow between AOX and the cytochrome pathway. We investigated the relationships between AOX expression and in vivo activity in Nicotiana sylvestris and the complex I–deficient CMSII mutant in response to a cell death elicitor. While a specific AOX1 isoform in the active reduced state was constitutively overexpressed in CMSII, partitioning through the alternative pathway was similar to the wild type. Lack of correlation between AOX content and activity indicates severe metabolic constraints in nonstressed mutant leaves. The bacterial elicitor harpin NEa induced similar timing and extent of cell death and a twofold respiratory burst in both genotypes with little change in AOX amounts. However, partitioning to AOX was increased twofold in the wild type but remained unchanged in CMSII. Oxidative phosphorylation modeling indicated a twofold ATP increase in both genotypes. By contrast, mitochondrial superoxide dismutase activity and reduced forms of ascorbate and glutathione were higher in CMSII than in the wild type. These results demonstrate genetically programmed flexibility of plant respiratory routes and antioxidants in response to elicitors and suggest that sustained ATP production, rather than AOX activity by itself or mitochondrial ROS, might be important for in planta cell death.