Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miquel Ribot is active.

Publication


Featured researches published by Miquel Ribot.


Aquatic Sciences | 2011

Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream

D. von Schiller; Vicenç Acuña; Daniel Graeber; Eugènia Martí; Miquel Ribot; Sergi Sabater; Xisca Timoner; Klement Tockner

Temporary streams are a dominant surface water type in the Mediterranean region. As a consequence of their hydrologic regime, these ecosystems contract and fragment as they dry, and expand after rewetting. Global change leads to a rapid increase in the extent of temporary streams, and more and more permanent streams are turning temporary. Consequently, there is an urgent need to better understand the effects of flow intermittency on the biogeochemistry and ecology of stream ecosystems. Our aim was to investigate how stream nutrient availability varied in relation to ecosystem contraction, fragmentation and expansion due to hydrologic drying and rewetting. We quantified the temporal and spatial changes in dissolved nitrogen (N) and phosphorus (P) concentrations along a reach of a temporary Mediterranean forest stream during an entire contraction–fragmentation–expansion hydrologic cycle. We observed marked temporal changes in N and P concentrations, in the proportion of organic and inorganic forms as well as in stoichiometric ratios, reflecting shifts in the relative importance of in-stream nutrient processing and external nutrient sources. In addition, the spatial heterogeneity of N and P concentrations and their ratios increased substantially with ecosystem fragmentation, reflecting the high relevance of in-stream processes when advective transport was lost. Overall, changes were more pronounced for N than for P. This study emphasizes the significance of flow intermittency in regulating stream nutrient availability and its implications for temporary stream management. Moreover, our results point to potential biogeochemical responses of these ecosystems in more temperate regions under future water scarcity scenarios.


Freshwater Science | 2013

Influence of nitrate and ammonium availability on uptake kinetics of stream biofilms

Miquel Ribot; Daniel von Schiller; Marc Peipoch; Francesc Sabater; Nancy B. Grimm; Eugènia Martí

Abstract. Human activity has significantly increased dissolved inorganic N (DIN) availability and has modified the relative proportion of NO3− and NH4+ species in many streams. Understanding the relationship between DIN concentration and DIN uptake is crucial to predicting how streams will respond to increased DIN loading. Nonetheless, this relationship remains unclear because of the complex interactions governing DIN uptake. We aimed to evaluate how biofilms from 2 streams differing in background DIN concentration would respond to increases in availability and changes in speciation (NO3− or NH4+) of DIN. We measured DIN uptake by biofilms in artificial flumes in each stream, using separate 15N-NO3− and 15N-NH4+ additions in a graded series of increasing DIN concentrations. The ambient uptake rate (U) was higher for NO3− than for NH4+ in both streams, but only U for NH4+ differed between streams. Uptake efficiency (UN-specific) at ambient conditions was higher in the low-N than in the high-N stream for both DIN species. A Michaelis–Menten model of uptake kinetics best fit the relationship between uptake and concentration in the case of NH4+ (for both streams) but not in the case of NO3− (neither stream). Moreover, saturation of NH4+ uptake occurred at lower rates (lower Umax) in the low-N than in the high-N stream, but affinity for NH4+ was higher (lower Ks) in the low-N stream. Together, these results indicate that the response capacity of biofilm communities to short-term increases of DIN concentration is determined primarily by the ambient DIN concentrations under which they develop. Our study also shows that DIN uptake by benthic biofilms varies with DIN availability and with DIN speciation, which often is modified by human activities.


Freshwater Science | 2012

Nitrogen processing and the role of epilithic biofilms downstream of a wastewater treatment plant

Miquel Ribot; Eugènia Martí; Daniel von Schiller; Francesc Sabater; Holger Daims; Tom J. Battin

Abstract.  We investigated how dissolved inorganic N (DIN) inputs from a wastewater treatment plant (WWTP) effluent are processed biogeochemically by the receiving stream. We examined longitudinal patterns of NH4+ and NO3− concentrations and their 15N signatures along a stream reach downstream of a WWTP. We compared the &dgr;15N signatures of epilithic biofilms with those of DIN to assess the role of stream biofilms in N processing. We analyzed the &dgr;15N signatures of biofilms coating light- and dark-side surfaces of cobbles separately to test whether light constrains functioning of biofilm communities. We sampled during 2 contrasting periods of the year (winter and summer) to explore whether changes in environmental conditions affected N biogeochemical processes. The study reach had a remarkable capacity for transformation and removal of DIN, but the magnitude and relevance of different biogeochemical pathways of N processing differed between seasons. In winter, assimilation and nitrification influenced downstream N fluxes. These processes were spatially segregated at the microhabitat scale, as indicated by a significant difference in the &dgr;15N signature of light- and dark-side biofilms, a result suggesting that nitrification was mostly associated with dark-side biofilms. In summer, N processing was intensified, and denitrification became an important N removal pathway. The &dgr;15N signatures of the light- and dark-side biofilms were similar, a result suggesting less spatial segregation of N cycling processes at this microhabitat scale. Collectively, our results highlight the capacity of WWTP-influenced streams to transform and remove WWTP-derived N inputs and indicate the active role of biofilms in these in-stream processes.


Aquatic Sciences | 2011

Influence of transient storage on stream nutrient uptake based on substrata manipulation

Alba Argerich; Eugènia Martí; Francesc Sabater; Roy Haggerty; Miquel Ribot

Quantification of the transient storage zone (As) has become critical in stream biogeochemical studies addressed to examine factors controlling nutrient uptake. It is expected that higher As may enhance the interaction between nutrients and biota and thus, increase nutrient uptake. However, results from the literature are controversial. We hypothesized that besides of the size of As, the intrinsic physical and biological characteristics of stream structures that generate As are also relevant for nutrient uptake. We performed 24 additions of phosphate, ammonium, and chloride in four reaches of a man-made channel where we introduced three types of naturally colonized substrata packs (mud, sand and cobbles) to modify As. We estimated ammonium and phosphate uptake coefficients in both the main channel and As using a solute transport model (OTIS-P) and compared the results among reaches with different substrata types. The introduction of substrata packs decreased water velocity and increased As similarly among treatments. Nutrient uptake coefficients in the main channel were similar among reaches with different type substrata packs; however, nutrient uptake coefficients measured in As differed among them as well as the ratio between ammonium and phosphorus uptake coefficients in As, which were 1.6 in reaches with mud packs and 0.02 in reaches with sand or cobble packs. Results obtained in this study suggest that the contribution of As in nutrient uptake not only depends on the size of As but on the type of materials used to increase As, and thus, have biogeochemical implications on restoration projects aimed to modify channel morphology.


Environmental Science & Technology | 2013

Nitrogen Stable Isotopes in Primary Uptake Compartments Across Streams Differing in Nutrient Availability

Ada Pastor; Marc Peipoch; Lídia Cañas; Eglantine Chappuis; Miquel Ribot; Esperanca̧ Gacia; Joan L. Riera; Eugeǹia Martí; Francesc Sabater

High variability in the natural abundance of nitrogen stable isotopes (δ(15)N) has been reported for primary uptake compartments (PUCs; e.g., epilithon, filamentous algae, bryophytes, macrophytes) in human-impacted aquatic ecosystems, but the origin of this variability is not yet well understood. We examined how δ(15)N of different PUC types relate to δ(15)N of dissolved inorganic nitrogen (DIN) species (nitrate and ammonium) and to the stream nutrient concentrations in which they grow. We selected 25 reaches located across the fluvial network of La Tordera catchment (NE Spain, 868.5 km(2)), encompassing a gradient of human pressures from headwaters to the river valley. δ(15)N-PUC variability was mostly explained by location within the fluvial network and was strongly related to the δ(15)N of DIN species, especially of ammonium. Models were stronger for PUCs growing within the stream channel and thus using streamwater as their main source of nutrients. Regression models including nutrient concentrations improved the prediction power for δ(15)N-PUCs, suggesting that nutrient concentrations and stoichiometry cannot be ignored in explaining the natural abundance of nitrogen isotopes in PUCs. These results provide insights into what controls variability in δ(15)N of PUCs within a stream network, with implications for the application of stables isotopes as an ecological tool.


Journal of The North American Benthological Society | 2011

Temporal variation of hydrological exchange and hyporheic biogeochemistry in a headwater stream during autumn

Alba Argerich; Eugènia Martí; Francesc Sabater; Miquel Ribot

Abstract The hyporheic zone is of great interest for stream ecologists because of its role in stream biogeochemical processing. Our study addresses the effects of leaf-litter inputs and varying discharge on surface–hyporheic water exchange and their possible consequences for the hyporheic zone biogeochemistry. Our study was conducted during autumn in Riera de Santa Fe (northeastern Iberian Peninsula), a stream with a well developed deciduous riparian canopy. We placed 15 wells spaced at 5-m intervals longitudinally down the study reach and measured surface and hyporheic nutrient and dissolved O2 (DO) concentrations on 23 sampling dates (15 during the leaffall period and 8 after a flood that washed out 65% of the accumulated leaf biomass). We assessed changes in surface-water exchange and in hyporheic NH4-N and soluble reactive P (SRP) uptake via coinjection of a conservative tracer and nutrients. Compared to surface water, hyporheic water had lower DO, higher SRP and NO3-N concentrations, and similar NH4-N concentration. Hyporheic water had higher DO saturation (p  =  0.00) and higher NH4-N concentration (p  =  0.00) in downwelling than in upwelling wells, whereas SRP and NO3-N concentrations did not differ significantly between well types (p > 0.05). Hydrologic connectivity was higher in downwelling than in upwelling wells and decreased with leaf-litter accumulation in the stream channel and increased with stream discharge. Increased connectivity after a flood reduced the difference in DO between surface and hyporheic compartments in upwelling and downwelling wells and in NO3-N in upwelling wells. NH4-N and SRP uptake responded differently to these changes. Hyporheic SRP uptake rate was controlled by hyporheic SRP concentration, which did not vary with changes in connectivity, whereas NH4-N uptake rate was indirectly affected by changes in connectivity through the influence of connectivity on DO availability. Last, although no NO3-N was added during the solute injections, we observed an increase in hyporheic NO3-N that probably was caused by nitrification. Together these results illustrate how the combination of stream hydrology and organic matter accumulation can dictate seasonal changes in hyporheic biogeochemistry.


Journal of Geophysical Research | 2014

Ecosystem respiration increases with biofilm growth and bed forms: Flume measurements with resazurin

Roy Haggerty; Miquel Ribot; Gabriel Singer; Eugènia Martí; Alba Argerich; Gemma Agell; Tom J. Battin

In a set of streamside mesocosms, stream ecosystem respiration (ER) increased with biofilm biomass and flow heterogeneity (turbulence) generated by impermeable bed forms, even though those bed forms had no hyporheic exchange. Two streamside flumes with gravel beds (single layer of gravel) were operated in parallel. The first flume had no bed forms, and the second flume had 10 cm high dune-shaped bed forms with a wavelength of 1.0 m. Ecosystem respiration was measured via resazurin reduction to resorufin in each flume at three different biomass stages during biofilm growth. Results support the hypothesis that ER increases with flow heterogeneity generated by bed forms across all biofilm biomass stages. For the same biofilm biomass, ER was up to 1.9 times larger for a flume with 10 cm high impermeable bed forms than for a flume without the bed forms. Further, the amount of increase in ER associated with impermeable bed forms was itself increased as biofilms grew. Regardless of bed forms, biofilms increased transient storage by a factor of approximately 4.


Environmental Science & Technology | 2014

Temporal Variability of Nitrogen Stable Isotopes in Primary Uptake Compartments in Four Streams Differing in Human Impacts

Ada Pastor; Joan L. Riera; Marc Peipoch; Lídia Cañas; Miquel Ribot; Esperança Gacia; Eugènia Martí; Francesc Sabater

Understanding the variability of the natural abundance in nitrogen stable isotopes (expressed as δ(15)N) of primary uptake compartments (PUCs; e.g., epilithon or macrophytes) is important due to the multiple applications of stable isotopes in freshwater research and can give insights into environmental and anthropogenic factors controlling N dynamics in streams. While previous research has shown how δ(15)N of PUCs varies with δ(15)N of dissolved inorganic N (DIN) among streams, less is known about how δ(15)N of PUCs varies over time. Here, we examined monthly variation of δ(15)N of PUCs and of DIN species (nitrate and ammonium) over a year, and compared it among streams with contrasting human impacts and PUC types. Our results showed no evidence of isotopic seasonal patterns. Temporal variability in δ(15)N-PUCs increased with human impact, being the highest in the urban stream, probably influenced by the high variability of δ(15)N-DIN. Among compartments, in-stream PUCs characterized by fast turnover rates, such as filamentous algae, showed the highest temporal variability in δ(15)N values (from -3.6 to 23.2 ‰). Our study elucidates some of the environmental and biological controls of temporal variability of δ(15)N in streams, which should be taken into account when using stable isotopes as an ecological tool.


Ecology | 2016

Small-scale heterogeneity of microbial N uptake in streams and its implications at the ecosystem level.

Marc Peipoch; Esperança Gacia; Elliot Bastias; Alexandra Serra; Lorenzo Proia; Miquel Ribot; Stephanie N. Merbt; Eugènia Martí

Large-scale factors associated with the environmental context of streams can explain a notable amount of variability in patterns of stream N cycling at the reach scale. However, when environmental factors fail to accurately predict stream responses at the reach level, focusing on emergent properties from small-scale heterogeneity in N cycling rates may help understand observed patterns in stream N cycling. To address how small-scale heterogeneity may contribute to shape patterns in whole-reach N uptake, we examined the drivers and variation in microbial N uptake at small spatial scales in two stream reaches with different environmental constraints (i.e., riparian canopy). Our experimental design was based on two ¹⁵N additions combined with a hierarchical sampling design from reach to microhabitat scales. Regardless of the degree of canopy cover, small-scale heterogeneity of microbial N uptake ranged by three orders of magnitude, and was characterized by a low abundance of highly active microhabitats (i.e., hot spots). The presence of those hot spots of N uptake resulted in a nonlinear spatial distribution of microbial N uptake rates within the streambed, especially in the case of epilithon assemblages. Small-scale heterogeneity in N uptake and turnover rates at the microhabitat scale was primarily driven by power relationships between N cycling rates and stream water velocity. Overall, fine benthic organic matter (FBOM) assemblages responded clearly to changes in the degree of canopy cover, overwhelming small-scale heterogeneity in its N uptake rates, and suggesting that FBOM contribution to whole-reach N uptake was principally imposed by environmental constraints from larger scales. In contrast, N uptake rates by epilithon showed no significant response to different environmental influences, but identical local drivers and spatial variation in each study reach. Therefore, contribution of epilithon assemblages to whole-reach N uptake was mainly associated with emerging properties from small-scale heterogeneity at lower spatial scales.


Aquatic Sciences | 2014

Contrasts among macrophyte riparian species in their use of stream water nitrate and ammonium: insights from 15N natural abundance

Marc Peipoch; Esperança Gacia; Alba Blesa; Miquel Ribot; Joan L. Riera; Eugènia Martí

We examined the relevance of dissolved inorganic nitrogen (DIN) forms (nitrate and ammonium) in stream water as N sources for different macrophyte species. To do this, we investigated the variability and relationships between 15N natural abundance of DIN forms and of four different macrophyte species in five different streams influenced by inputs from wastewater treatment plants and over time within one of these streams. Results showed that 15N signatures were similar in species of submersed and amphibious macrophytes and in stream water DIN, whereas 15N signatures of the riparian species were not. 15N signatures of macrophytes were generally closer to 15N signatures of nitrate, regardless of the species considered. Our results showed significant relationships between 15N signatures of DIN and those of submersed Callitriche stagnalis and amphibious Veronica beccabunga and Apium nodiflorum, suggesting stream water DIN as a relevant N source for these two functional groups. Moreover, results from a mixing model suggested that stream water DIN taken up by the submersed and amphibious species was mostly in the form of nitrate. Together, these results suggest different contribution to in-stream N uptake among the spatially-segregated species of macrophytes. While submersed and amphibious species can contribute to in-stream N uptake by assimilation of DIN, macrophyte species located at stream channel edges do not seem to rely on stream water DIN as an N source. Ultimately, these results add a functional dimension to the current use of macrophytes for the restoration of stream channel morphology, indicating that they can also contribute to reduce excess DIN in streams.

Collaboration


Dive into the Miquel Ribot's collaboration.

Top Co-Authors

Avatar

Eugènia Martí

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel von Schiller

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Marc Peipoch

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

D. von Schiller

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Esperança Gacia

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ada Pastor

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Sergi Sabater

Catalan Institute for Water Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge