Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mirabela Rusu is active.

Publication


Featured researches published by Mirabela Rusu.


Cell | 2007

A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing

Pablo Landgraf; Mirabela Rusu; Robert L. Sheridan; Alain Sewer; Nicola Iovino; Alexei A. Aravin; Sébastien Pfeffer; Amanda Rice; Alice O. Kamphorst; Markus Landthaler; Carolina Lin; Nicholas D. Socci; Leandro C. Hermida; Valerio Fulci; Sabina Chiaretti; Robin Foà; Julia Schliwka; Uta Fuchs; Astrid Novosel; Roman Ulrich Müller; Bernhard Schermer; Ute Bissels; Jason M. Inman; Quang Phan; Minchen Chien; David B. Weir; Ruchi Choksi; Gabriella De Vita; Daniela Frezzetti; Hans Ingo Trompeter

MicroRNAs (miRNAs) are small noncoding regulatory RNAs that reduce stability and/or translation of fully or partially sequence-complementary target mRNAs. In order to identify miRNAs and to assess their expression patterns, we sequenced over 250 small RNA libraries from 26 different organ systems and cell types of human and rodents that were enriched in neuronal as well as normal and malignant hematopoietic cells and tissues. We present expression profiles derived from clone count data and provide computational tools for their analysis. Unexpectedly, a relatively small set of miRNAs, many of which are ubiquitously expressed, account for most of the differences in miRNA profiles between cell lineages and tissues. This broad survey also provides detailed and accurate information about mature sequences, precursors, genome locations, maturation processes, inferred transcriptional units, and conservation patterns. We also propose a subclassification scheme for miRNAs for assisting future experimental and computational functional analyses.


Journal of Structural Biology | 2011

Using Sculptor and Situs for simultaneous assembly of atomic components into low-resolution shapes

Stefan Birmanns; Mirabela Rusu; Willy Wriggers

We describe an integrated software system called Sculptor that combines visualization capabilities with molecular modeling algorithms for the analysis of multi-scale data sets. Sculptor features extensive special purpose visualization techniques that are based on modern GPU programming and are capable of representing complex molecular assemblies in real-time. The integration of graphics and modeling offers several advantages. The user interface not only eases the usually steep learning curve of pure algorithmic techniques, but it also permits instant analysis and post-processing of results, as well as the integration of results from external software. Here, we implemented an interactive peak-selection strategy that enables the user to explore a preliminary score landscape generated by the colors tool of Situs. The interactive placement of components, one at a time, is advantageous for low-resolution or ambiguously shaped maps, which are sometimes difficult to interpret by the fully automatic peak selection of colors. For the subsequent refinement of the preliminary models resulting from both interactive and automatic peak selection, we have implemented a novel simultaneous multi-body docking in Sculptor and Situs that softly enforces shape complementarities between components using the normalization of the cross-correlation coefficient. The proposed techniques are freely available in Situs version 2.6 and Sculptor version 2.0.


Journal of Structural Biology | 2012

Evolutionary bidirectional expansion for the tracing of alpha helices in cryo-electron microscopy reconstructions.

Mirabela Rusu; Willy Wriggers

Cryo-electron microscopy (cryo-EM) enables the imaging of macromolecular complexes in near-native environments at resolutions that often permit the visualization of secondary structure elements. For example, alpha helices frequently show consistent patterns in volumetric maps, exhibiting rod-like structures of high density. Here, we introduce VolTrac (Volume Tracer) - a novel technique for the annotation of alpha-helical density in cryo-EM data sets. VolTrac combines a genetic algorithm and a bidirectional expansion with a tabu search strategy to trace helical regions. Our method takes advantage of the stochastic search by using a genetic algorithm to identify optimal placements for a short cylindrical template, avoiding exploration of already characterized tabu regions. These placements are then utilized as starting positions for the adaptive bidirectional expansion that characterizes the curvature and length of the helical region. The method reliably predicted helices with seven or more residues in experimental and simulated maps at intermediate (4-10Å) resolution. The observed success rates, ranging from 70.6% to 100%, depended on the map resolution and validation parameters. For successful predictions, the helical axes were located within 2Å from known helical axes of atomic structures.


Frontiers in Microbiology | 2012

An Assembly Model of Rift Valley Fever Virus

Mirabela Rusu; Richard Bonneau; Stanley J. Watowich; Stefan Birmanns; Willy Wriggers; Alexander N. Freiberg

Rift Valley fever virus (RVFV) is a bunyavirus endemic to Africa and the Arabian Peninsula that infects humans and livestock. The virus encodes two glycoproteins, Gn and Gc, which represent the major structural antigens and are responsible for host cell receptor binding and fusion. Both glycoproteins are organized on the virus surface as cylindrical hollow spikes that cluster into distinct capsomers with the overall assembly exhibiting an icosahedral symmetry. Currently, no experimental three-dimensional structure for any entire bunyavirus glycoprotein is available. Using fold recognition, we generated molecular models for both RVFV glycoproteins and found significant structural matches between the RVFV Gn protein and the influenza virus hemagglutinin protein and a separate match between RVFV Gc protein and Sindbis virus envelope protein E1. Using these models, the potential interaction and arrangement of both glycoproteins in the RVFV particle was analyzed, by modeling their placement within the cryo-electron microscopy density map of RVFV. We identified four possible arrangements of the glycoproteins in the virion envelope. Each assembly model proposes that the ectodomain of Gn forms the majority of the protruding capsomer and that Gc is involved in formation of the capsomer base. Furthermore, Gc is suggested to facilitate intercapsomer connections. The proposed arrangement of the two glycoproteins on the RVFV surface is similar to that described for the alphavirus E1-E2 proteins. Our models will provide guidance to better understand the assembly process of phleboviruses and such structural studies can also contribute to the design of targeted antivirals.


Bioinformatics | 2008

Biomolecular pleiomorphism probed by spatial interpolation of coarse models

Mirabela Rusu; Stefan Birmanns; Willy Wriggers

In low resolution structures of biological assemblies one can often observe conformational deviations that require a flexible rearrangement of structural domains fitted at the atomic level. We are evaluating interpolation methods for the flexible alignment of atomic models based on coarse models. Spatial interpolation is well established in image-processing and visualization to describe the overall deformation or warping of an object or an image. Combined with a coarse representation of the biological system by feature vectors, such methods can provide a flexible approximation of the molecular structure. We have compared three well-known interpolation techniques and evaluated the results by comparing them with constrained molecular dynamics. One method, inverse distance weighting interpolation, consistently produced models that were nearly indistinguishable on the alpha carbon level from the molecular dynamics results. The method is simple to apply and enables flexing of structures by non-expert modelers. This is useful for the basic interpretation of volumetric data in biological applications such as electron microscopy. The method can be used as a general interpretation tool for sparsely sampled motions derived from coarse models. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Translational Oncology | 2016

Radiomics Analysis on FLT-PET/MRI for Characterization of Early Treatment Response in Renal Cell Carcinoma: A Proof-of-Concept Study

Jacob Antunes; Satish Viswanath; Mirabela Rusu; Laia Valls; Christopher J. Hoimes; Norbert Avril; Anant Madabhushi

Studying early response to cancer treatment is significant for patient treatment stratification and follow-up. Although recent advances in positron emission tomography (PET) and magnetic resonance imaging (MRI) allow for evaluation of tumor response, a quantitative objective assessment of treatment-related effects offers localization and quantification of structural and functional changes in the tumor region. Radiomics, the process of computerized extraction of features from radiographic images, is a new strategy for capturing subtle changes in the tumor region that works by quantifying subvisual patterns which might escape human identification. The goal of this study was to demonstrate feasibility for performing radiomics analysis on integrated PET/MRI to characterize early treatment response in metastatic renal cell carcinoma (RCC) undergoing sunitinib therapy. Two patients with advanced RCC were imaged using an integrated PET/MRI scanner. [18 F] fluorothymidine (FLT) was used as the PET radiotracer, which can measure the degree of cell proliferation. Image acquisitions included test/retest scans before sunitinib treatment and one scan 3 weeks into treatment using [18 F] FLT-PET, T2-weighted (T2w), and diffusion-weighted imaging (DWI) protocols, where DWI yielded an apparent diffusion coefficient (ADC) map. Our framework to quantitatively characterize treatment-related changes involved the following analytic steps: 1) intraacquisition and interacquisition registration of protocols to allow voxel-wise comparison of changes in radiomic features, 2) correction and pseudoquantification of T2w images to remove acquisition artifacts and examine tissue-specific response, 3) characterization of information captured by T2w MRI, FLT-PET, and ADC via radiomics, and 4) combining multiparametric information to create a map of integrated changes from PET/MRI radiomic features. Standardized uptake value (from FLT-PET) and ADC textures ranked highest for reproducibility in a test/retest evaluation as well as for capturing treatment response, in comparison to high variability seen in T2w MRI. The highest-ranked radiomic feature yielded a normalized percentage change of 63% within the RCC region and 17% in a spatially distinct normal region relative to its pretreatment value. By comparison, both the original and postprocessed T2w signal intensity appeared to be markedly less sensitive and specific to changes within the tumor. Our preliminary results thus suggest that radiomics analysis could be a powerful tool for characterizing treatment response in integrated PET/MRI.


Journal of Structural Biology | 2012

Automated tracing of filaments in 3D electron tomography reconstructions using Sculptor and Situs

Mirabela Rusu; Zbigniew Starosolski; Manuel Wahle; Alexander Rigort; Willy Wriggers

The molecular graphics program Sculptor and the command-line suite Situs are software packages for the integration of biophysical data across spatial resolution scales. Herein, we provide an overview of recently developed tools relevant to cryo-electron tomography (cryo-ET), with an emphasis on functionality supported by Situs 2.7.1 and Sculptor 2.1.1. We describe a work flow for automatically segmenting filaments in cryo-ET maps including denoising, local normalization, feature detection, and tracing. Tomograms of cellular actin networks exhibit both cross-linked and bundled filament densities. Such filamentous regions in cryo-ET data sets can then be segmented using a stochastic template-based search, VolTrac. The approach combines a genetic algorithm and a bidirectional expansion with a tabu search strategy to localize and characterize filamentous regions. The automated filament segmentation by VolTrac compares well to a manual one performed by expert users, and it allows an efficient and reproducible analysis of large data sets. The software is free, open source, and can be used on Linux, Macintosh or Windows computers.


Journal of Structural Biology | 2010

Evolutionary tabu search strategies for the simultaneous registration of multiple atomic structures in cryo-EM reconstructions

Mirabela Rusu; Stefan Birmanns

A structural characterization of multi-component cellular assemblies is essential to explain the mechanisms governing biological function. Macromolecular architectures may be revealed by integrating information collected from various biophysical sources - for instance, by interpreting low-resolution electron cryomicroscopy reconstructions in relation to the crystal structures of the constituent fragments. A simultaneous registration of multiple components is beneficial when building atomic models as it introduces additional spatial constraints to facilitate the native placement inside the map. The high-dimensional nature of such a search problem prevents the exhaustive exploration of all possible solutions. Here we introduce a novel method based on genetic algorithms, for the efficient exploration of the multi-body registration search space. The classic scheme of a genetic algorithm was enhanced with new genetic operations, tabu search and parallel computing strategies and validated on a benchmark of synthetic and experimental cryo-EM datasets. Even at a low level of detail, for example 35-40 A, the technique successfully registered multiple component biomolecules, measuring accuracies within one order of magnitude of the nominal resolutions of the maps. The algorithm was implemented using the Sculptor molecular modeling framework, which also provides a user-friendly graphical interface and enables an instantaneous, visual exploration of intermediate solutions.


Journal of Magnetic Resonance Imaging | 2016

Identifying in vivo DCE MRI markers associated with microvessel architecture and gleason grades of prostate cancer

Asha Singanamalli; Mirabela Rusu; Rachel Sparks; Natalie Shih; Amy Ziober; Li-Ping Wang; John E. Tomaszewski; Mark A. Rosen; Michael Feldman; Anant Madabhushi

To identify computer extracted in vivo dynamic contrast enhanced (DCE) MRI markers associated with quantitative histomorphometric (QH) characteristics of microvessels and Gleason scores (GS) in prostate cancer.


Neurocomputing | 2014

Identifying quantitative in vivo multi-parametric MRI features for treatment related changes after laser interstitial thermal therapy of prostate cancer

Satish Viswanath; Robert Toth; Mirabela Rusu; Dan Sperling; Herbert Lepor; Jurgen J. Fütterer; Anant Madabhushi

Laser interstitial thermal therapy (LITT) is a new therapeutic strategy being explored in prostate cancer (CaP), which involves focal ablation of organlocalized tumor via an interstitial laser fiber. While little is known about treatment-related changes following LITT, studying post-LITT changes via imaging is extremely significant for enabling early image-guided intervention and follow-up. In this work, we present the first attempt at examining focal treatment-related changes on a per-voxel basis via quantitative comparison of MRI features pre- and post-LITT, and hence identifying computerized MRI features that are highly sensitive as well as specific to post-LITT changes within the ablation zone in the prostate. A retrospective cohort of 5 patient datasets comprising both pre- and post-LITT T2-weighted (T2w) and diffusion-weighted (DWI) acquisitions was considered, where DWI MRI yielded an Apparent Diffusion Co-efficient (ADC) map. Our scheme involved (1) inter-protocol registration of T2w and ADC MRI, as well as inter-acquisition registration of pre- and post-LITT MRI, (2) quantitation of MRI parameters by correcting for intensity drift in order to examine tissuespecific response, and (3) quantification of the information captured by T2w MRI and ADC maps via texture and intensity features. Correction of parameter drift resulted in visually discernible improvements in highlighting tissue-specific response in different MRI features. Quantitative, voxel-wise comparison of the changes in different MRI features indicated that steerable and non-steerable gradient texture features, rather than the original T2w intensity and ADC values, were highly sensitive as well as specific in identifying changes within the ablation zone pre- and post-LITT. The highest ranked texture feature yielded a normalized percentage change of 186% within the ablation zone and 43% in a spatially distinct normal region, relative to its pre-LITT value. By comparison, both the original T2w intensity and ADC value demonstrated a markedly less sensitive and specific response to changes within the ablation zone. Qualitative as well as quantitative evaluation of co-occurrence texture features indicated the presence of LITT-related effects such as edema adjacent to the ablation zone, which were indiscernible on the original T2w and ADC images. Our preliminary results thus indicate great potential for non-invasive computerized MRI imaging features for determining focal treatment related changes, informing image-guided interventions, as well as predicting long- and short-term patient outcome.

Collaboration


Dive into the Mirabela Rusu's collaboration.

Top Co-Authors

Avatar

Anant Madabhushi

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Stefan Birmanns

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Michael Feldman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Satish Viswanath

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth M. Genega

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Haibo Wang

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge