Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mireille Basselin is active.

Publication


Featured researches published by Mireille Basselin.


Neuropsychopharmacology | 2006

Chronic Lithium Chloride Administration Attenuates Brain NMDA Receptor-Initiated Signaling via Arachidonic Acid in Unanesthetized Rats

Mireille Basselin; Lisa Chang; Jane M. Bell; Stanley I. Rapoport

It has been proposed that lithium is effective in bipolar disorder (BD) by inhibiting glutamatergic neurotransmission, particularly via N-methyl-D-aspartate receptors (NMDARs). To test this hypothesis and to see if the neurotransmission could involve the NMDAR-mediated activation of phospholipase A2 (PLA2), to release arachidonic acid (AA) from membrane phospholipid, we administered subconvulsant doses of NMDA to unanesthetized rats fed a chronic control or LiCl diet. We used quantitative autoradiography following the intravenous injection of radiolabeled AA to measure regional brain incorporation coefficients k* for AA, which reflect receptor-mediated activation of PLA2. In control diet rats, NMDA (25 and 50 mg/kg i.p.) compared with i.p. saline increased k* significantly in 49 and 67 regions, respectively, of the 83 brain regions examined. The regions affected were those with reported NMDARs, including the neocortex, hippocampus, caudate-putamen, thalamus, substantia nigra, and nucleus accumbens. The increases could be blocked by pretreatment with the specific noncompetitive NMDA antagonist MK-801 ((5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate) (0.3 mg/kg i.p.), as well by a 6-week LiCl diet sufficient to produce plasma and brain lithium concentrations known to be effective in BD. MK-801 alone reduced baseline values for k* in many brain regions. The results show that it is possible to image NMDA signaling via PLA2 activation and AA release in vivo, and that chronic lithium blocks this signaling, consistent with its suggested mechanism of action in BD.


Journal of Neuroinflammation | 2011

Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in brain of HIV-1 transgenic rats

Jagadeesh S. Rao; Hyung-Wook Kim; Matthew Kellom; Dede Greenstein; Mei Chen; Andrew D. Kraft; Harry Gj; Stanley I. Rapoport; Mireille Basselin

BackgroundCognitive impairment has been reported in human immune deficiency virus-1- (HIV-1-) infected patients as well as in HIV-1 transgenic (Tg) rats. This impairment has been linked to neuroinflammation, disturbed brain arachidonic acid (AA) metabolism, and synapto-dendritic injury. We recently reported upregulated brain AA metabolism in 7- to 9-month-old HIV-1 Tg rats. We hypothesized that these HIV-1 Tg rats also would show upregulated brain inflammatory and AA cascade markers and a deficit of synaptic proteins.MethodsWe measured protein and mRNA levels of markers of neuroinflammation and the AA cascade, as well as pro-apoptotic factors and synaptic proteins, in brains from 7- to 9-month-old HIV-1 Tg and control rats.ResultsCompared with control brain, HIV-1 Tg rat brain showed immunoreactivity to glycoprotein 120 and tat HIV-1 viral proteins, and significantly higher protein and mRNA levels of (1) the inflammatory cytokines interleukin-1β and tumor necrosis factor α, (2) the activated microglial/macrophage marker CD11b, (3) AA cascade enzymes: AA-selective Ca2+-dependent cytosolic phospholipase A2 (cPLA2)-IVA, secretory sPLA2-IIA, cyclooxygenase (COX)-2, membrane prostaglandin E2 synthase, 5-lipoxygenase (LOX) and 15-LOX, cytochrome p450 epoxygenase, and (4) transcription factor NF-κBp50 DNA binding activity. HIV-1 Tg rat brain also exhibited signs of cell injury, including significantly decreased levels of brain-derived neurotrophic factor (BDNF) and drebrin, a marker of post-synaptic excitatory dendritic spines. Expression of Ca2+-independent iPLA2-VIA and COX-1 was unchanged.ConclusionsHIV-1 Tg rats show elevated brain markers of neuroinflammation and AA metabolism, with a deficit in several synaptic proteins. These changes are associated with viral proteins and may contribute to cognitive impairment. The HIV-1 Tg rat may be a useful model for understanding progression and treatment of cognitive impairment in HIV-1 patients.


Prostaglandins & Other Lipid Mediators | 2011

Docosahexaenoic Acid (DHA) Incorporation into the Brain from Plasma, as an In Vivo Biomarker of Brain DHA Metabolism and Neurotransmission

Stanley I. Rapoport; Epolia Ramadan; Mireille Basselin

Docosahexaenoic acid (DHA) is critical for maintaining normal brain structure and function, and is considered neuroprotective. Its brain concentration depends on dietary DHA content and hepatic conversion from its dietary derived n-3 precursor, α-linolenic acid (α-LNA). We have developed an in vivo method in rats using quantitative autoradiography and intravenously injected radiolabeled DHA to image net incorporation into the brain of unesterified plasma DHA, and showed with this method that the incorporation rate of DHA equals the rate of brain metabolic DHA consumption. The method has been extended for use in humans with positron emission tomography (PET). Furthermore, imaging in unanesthetized rats using DHA incorporation as a biomarker in response to acute N-methyl-D-aspartate administration confirms that regional DHA signaling is independent of extracellular calcium, and likely mediated by a calcium-independent phospholipase A(2) (iPLA(2)). Studies in mice in which iPLA(2)-VIA (β) was knocked out confirmed that this enzyme is critical for baseline and muscarinic cholinergic signaling involving DHA. Thus, quantitative imaging of DHA incorporation from plasma into brain can be used as an in vivo biomarker of brain DHA metabolism and neurotransmission.


Neuropsychopharmacology | 2005

Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid.

Mireille Basselin; Lisa Chang; Jane M. Bell; Stanley I. Rapoport

We studied the effect of lithium chloride on dopaminergic neurotransmission via D2-like receptors coupled to phospholipase A2 (PLA2). In unanesthetized rats injected i.v. with radiolabeled arachidonic acid (AA, 20:4 n-6), regional PLA2 activation was imaged by measuring regional incorporation coefficients k* of AA (brain radioactivity divided by integrated plasma radioactivity) using quantitative autoradiography, following administration of the D2-like receptor agonist, quinpirole. In rats fed a control diet, quinpirole at 1 mg/kg i.v. increased k* for AA significantly in 17 regions with high densities of D2-like receptors, of 61 regions examined. Increases in k* were found in the prefrontal cortex, frontal cortex, accumbens nucleus, caudate–putamen, substantia nigra, and ventral tegmental area. Quinpirole, 0.25 mg/kg i.v. enhanced k* significantly only in the caudate–putamen. In rats fed LiCl for 6 weeks to produce a therapeutically relevant brain lithium concentration, neither 0.25 mg/kg nor 1 mg/kg quinpirole increased k* significantly in any region. Orofacial movements following quinpirole were modified but not abolished by LiCl feeding. The results suggest that downregulation by lithium of D2-like receptor signaling involving PLA2 and AA may contribute to lithiums therapeutic efficacy in bipolar disorder.


Journal of Neurochemistry | 2007

Chronic lithium administration attenuates up-regulated brain arachidonic acid metabolism in a rat model of neuroinflammation

Mireille Basselin; Nelly E. Villacreses; Ho-Joo Lee; Jane M. Bell; Stanley I. Rapoport

Neuroinflammation, caused by a 6‐day intracerebroventricular infusion of lipopolysaccharide (LPS) in rats, is associated with the up‐regulation of brain arachidonic acid (AA) metabolism markers. Because chronic LiCl down‐regulates markers of brain AA metabolism, we hypothesized that it would attenuate increments of these markers in LPS‐infused rats. Incorporation coefficients k* of AA from plasma into brain, and other brain AA metabolic markers, were measured in rats that had been fed a LiCl or control diet for 6 weeks, and subjected in the last 6 days on the diet to intracerebroventricular infusion of artificial CSF or of LPS. In rats on the control diet, LPS compared with CSF infusion increased k* significantly in 28 regions, whereas the LiCl diet prevented k* increments in 18 of these regions. LiCl in CSF infused rats increased k* in 14 regions, largely belonging to auditory and visual systems. Brain cytoplasmic phospholipase A2 activity, and prostaglandin E2 and thromboxane B2 concentrations, were increased significantly by LPS infusion in rats fed the control but not the LiCl diet. Chronic LiCl administration attenuates LPS‐induced up‐regulation of a number of brain AA metabolism markers. To the extent that this up‐regulation has neuropathological consequences, lithium might be considered for treating human brain diseases accompanied by neuroinflammation.


Journal of Lipid Research | 2010

Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation

Mireille Basselin; Hyung-Wook Kim; Mei Chen; Kaizong Ma; Stanley I. Rapoport; Robert C. Murphy; Santiago E. Farias

Neuroinflammation, caused by 6 days of intracerebroventricular infusion of a low dose of lipopolysaccharide (LPS; 0.5 ng/h), stimulates brain arachidonic acid (AA) metabolism in rats, but 6 weeks of lithium pretreatment reduces this effect. To further understand this action of lithium, we measured concentrations of eicosanoids and docosanoids generated from AA and docosahexaenoic acid (DHA), respectively, in high-energy microwaved rat brain using LC/MS/MS and two doses of LPS. In rats fed a lithium-free diet, low (0.5 ng/h)- or high (250 ng/h)-dose LPS compared with artificial cerebrospinal fluid increased brain unesterified AA and prostaglandin E2 concentrations and activities of AA-selective Ca2+-dependent cytosolic phospholipase A2 (cPLA2)-IV and Ca2+-dependent secretory sPLA2. LiCl feeding prevented these increments. Lithium had a significant main effect by increasing brain concentrations of lipoxygenase-derived AA metabolites, 5- hydroxyeicosatetraenoic acid (HETE), 5-oxo-eicosatetranoic acid, and 17-hydroxy-DHA by 1.8-, 4.3- and 1.9-fold compared with control diet. Lithium also increased 15-HETE in high-dose LPS-infused rats. Ca2+-independent iPLA2-VI activity and unesterified DHA and docosapentaenoic acid (22:5n-3) concentrations were unaffected by LPS or lithium. This study demonstrates, for the first time, that lithium can increase brain 17-hydroxy-DHA formation, indicating a new and potentially important therapeutic action of lithium.


Journal of Neurochemistry | 2003

Chronic lithium administration potentiates brain arachidonic acid signaling at rest and during cholinergic activation in awake rats

Mireille Basselin; Lisa Chang; Ruth Seemann; Jane M. Bell; Stanley I. Rapoport

Studies were performed to determine if the reported ‘proconvulsant’ action of lithium in rats given cholinergic drugs is related to receptor‐initiated phospholipase A2 signaling via arachidonic acid. Regional brain incorporation coefficients k* of intravenously injected [1‐14C]arachidonic acid, which represent this signaling, were measured by quantitative autoradiography in unanesthetized rats at baseline and following administration of subconvulsant doses of the cholinergic muscarinic agonist, arecoline. In rats fed LiCl for 6 weeks to produce a therapeutically relevant brain lithium concentration, the mean baseline values of k* in brain auditory and visual areas were significantly greater than in rats fed control diet. Arecoline at doses of 2 and 5 mg/kg intraperitoneally increased k* in widespread brain areas in rats fed the control diet as well as the LiCl diet. However, the arecoline‐induced increments often were significantly greater in the LiCl‐fed than in the control diet‐fed rats. Lithiums elevation of baseline k* in auditory and visual regions may correspond to its ability in humans to increase auditory and visual evoked responses. Additionally, its augmentation of the k* responses to arecoline may underlie its reported ‘proconvulsant’ action with cholinergic drugs, as arachidonic acid and its eicosanoid metabolites can increase neuronal excitability and seizure propagation.


Neuropsychopharmacology | 2005

Chronic lithium administration to rats selectively modifies 5-HT2A/2C receptor-mediated brain signaling via arachidonic acid.

Mireille Basselin; Lisa Chang; Ruth Seemann; Jane M. Bell; Stanley I. Rapoport

The effects of chronic lithium administration on regional brain incorporation coefficients k* of arachidonic acid (AA), a marker of phospholipase A2 (PLA2) activation, were determined in unanesthetized rats administered i.p. saline or 1 mg/kg i.p. (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), a 5-HT2A/2C receptor agonist. After injecting [1-14C]AA intravenously, k* (brain radioactivity/integrated plasma radioactivity) was measured in each of 94 brain regions by quantitative autoradiography. Studies were performed in rats fed a LiCl or a control diet for 6 weeks. In the control diet rats, DOI significantly increased k* in widespread brain areas containing 5-HT2A/2C receptors. In the LiCl-fed rats, the significant positive k* response to DOI did not differ from that in control diet rats in most brain regions, except in auditory and visual areas, where the response was absent. LiCl did not change the head turning response to DOI seen in control rats. In summary, LiCl feeding blocked PLA2-mediated signal involving AA in response to DOI in visual and auditory regions, but not generally elsewhere. These selective effects may be related to lithiums therapeutic efficacy in patients with bipolar disorder, particularly its ability to ameliorate hallucinations in that disease.


Journal of Cerebral Blood Flow and Metabolism | 2011

Imaging Upregulated Brain Arachidonic Acid Metabolism in HIV-1 Transgenic Rats

Mireille Basselin; Epolia Ramadan; Miki Igarashi; Lisa Chang; Mei Chen; Andrew D. Kraft; G. Jean Harry; Stanley I. Rapoport

Human immunodeficiency virus (HIV)-associated infection involves the entry of virus-bearing monocytes into the brain, followed by microglial activation, neuroinflammation, and upregulated arachidonic acid (AA) metabolism. The HIV-1 transgenic (Tg) rat, a noninfectious HIV-1 model, shows neurologic and behavioral abnormalities after 5 months of age. We hypothesized that brain AA metabolism would be elevated in older HIV-1 Tg rats in vivo. Arachidonic acid incorporation from the plasma into the brain of unanesthetized 7-to-9-month-old rats was imaged using quantitative autoradiography, after [1-14C]AA infusion. Brain phospholipase (PLA2) activities and eicosanoid concentrations were measured, and enzymes were localized by immunostaining. AA incorporation coefficients k* and rates Jin, measures of AA metabolism, were significantly higher in 69 of 81 brain regions in HIV-1 Tg than in control rats, as were activities of cytosolic (c)PLA2-IV, secretory (s)PLA2, and calcium independent (i)PLA2-VI, as well as prostaglandin E2 and leukotriene B4 concentrations. Immunostaining of somatosensory cortex showed elevated cPLA2-IV, sPLA2-IIA, and cyclooxygenase-2 in neurons. Brain AA incorporation and other markers of AA metabolism are upregulated in HIV-1 Tg rats, in which neurologic changes and neuroinflammation have been reported. Positron emission tomography with [1-11C]AA could be used to test whether brain AA metabolism is upregulated in HIV-1-infected patients, in relation to cognitive and behavioral disturbances.


Journal of Lipid Research | 2010

Imaging decreased brain docosahexaenoic acid metabolism and signaling in iPLA2β (VIA)-deficient mice

Mireille Basselin; Angelo O. Rosa; Epolia Ramadan; Yewon Cheon; Lisa Chang; Mei Chen; Deanna Greenstein; Mary Wohltmann; John Turk; Stanley I. Rapoport

Ca2+-independent phospholipase A2β (iPLA2β) selectively hydrolyzes docosahexaenoic acid (DHA, 22:6n-3) in vitro from phospholipid. Mutations in the PLA2G6 gene encoding this enzyme occur in patients with idiopathic neurodegeneration plus brain iron accumulation and dystonia-parkinsonism without iron accumulation, whereas mice lacking PLA2G6 show neurological dysfunction and neuropathology after 13 months. We hypothesized that brain DHA metabolism and signaling would be reduced in 4-month-old iPLA2β-deficient mice without overt neuropathology. Saline or the cholinergic muscarinic M1,3,5 receptor agonist arecoline (30 mg/kg) was administered to unanesthetized iPLA2β−/−, iPLA2β+/−, and iPLA2β+/+ mice, and [1-14C]DHA was infused intravenously. DHA incorporation coefficients k* and rates Jin, representing DHA metabolism, were determined using quantitative autoradiography in 81 brain regions. iPLA2β−/− or iPLA2β+/− compared with iPLA2β+/+ mice showed widespread and significant baseline reductions in k* and Jin for DHA. Arecoline increased both parameters in brain regions of iPLA2β+/+ mice but quantitatively less so in iPLA2β−/− and iPLA2β+/− mice. Consistent with iPLA2β’s reported ability to selectively hydrolyze DHA from phospholipid in vitro, iPLA2β deficiency reduces brain DHA metabolism and signaling in vivo at baseline and following M1,3,5 receptor activation. Positron emission tomography might be used to image disturbed brain DHA metabolism in patients with PLA2G6 mutations.

Collaboration


Dive into the Mireille Basselin's collaboration.

Top Co-Authors

Avatar

Stanley I. Rapoport

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lisa Chang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mei Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Epolia Ramadan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jane M. Bell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kaizong Ma

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hiren R. Modi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jagadeesh S. Rao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nelly E. Villacreses

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yewon Cheon

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge